"Calabi-Yau differential equations"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (section 'articles' updated) |
imported>Pythagoras0 (section 'articles' updated) |
||
4번째 줄: | 4번째 줄: | ||
==articles== | ==articles== | ||
+ | * Andreas Gerhardus, Hans Jockers, Quantum periods of Calabi-Yau fourfolds, arXiv:1604.05325 [hep-th], April 18 2016, http://arxiv.org/abs/1604.05325 | ||
* Charles F. Doran, Andreas Malmendier, Calabi-Yau manifolds realizing symplectically rigid monodromy tuples, http://arxiv.org/abs/1503.07500v2 | * Charles F. Doran, Andreas Malmendier, Calabi-Yau manifolds realizing symplectically rigid monodromy tuples, http://arxiv.org/abs/1503.07500v2 | ||
* Zudilin, V. V. 2011. “Arithmetic Hypergeometric Series.” Rossi\uı Skaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 66 (2(398)): 163–216. doi:10.1070/RM2011v066n02ABEH004742. | * Zudilin, V. V. 2011. “Arithmetic Hypergeometric Series.” Rossi\uı Skaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 66 (2(398)): 163–216. doi:10.1070/RM2011v066n02ABEH004742. |
2016년 4월 19일 (화) 18:15 판
expositions
- Peruničić, Andrija. “Introduction to Arithmetic Mirror Symmetry.” arXiv:1408.7055 [math], August 29, 2014. http://arxiv.org/abs/1408.7055.
articles
- Andreas Gerhardus, Hans Jockers, Quantum periods of Calabi-Yau fourfolds, arXiv:1604.05325 [hep-th], April 18 2016, http://arxiv.org/abs/1604.05325
- Charles F. Doran, Andreas Malmendier, Calabi-Yau manifolds realizing symplectically rigid monodromy tuples, http://arxiv.org/abs/1503.07500v2
- Zudilin, V. V. 2011. “Arithmetic Hypergeometric Series.” Rossi\uı Skaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 66 (2(398)): 163–216. doi:10.1070/RM2011v066n02ABEH004742.
- Yang, Yifan, and Wadim Zudilin. 2010. “On $\rm Sp_4$ Modularity of Picard-Fuchs Differential Equations for Calabi-Yau Threefolds.” In Gems in Experimental Mathematics, 517:381–413. Contemp. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2731075.
- Chen, Yao-Han, Yifan Yang, and Noriko Yui. 2008. “Monodromy of Picard-Fuchs Differential Equations for Calabi-Yau Threefolds.” Journal Für Die Reine Und Angewandte Mathematik. [Crelle’s Journal] 616: 167–203. doi:10.1515/CRELLE.2008.021.
- Almkvist, Gert, and Wadim Zudilin. 2006. “Differential Equations, Mirror Maps and Zeta Values.” In Mirror Symmetry. V, 38:481–515. AMS/IP Stud. Adv. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2282972.
- Stienstra, Jan, and Frits Beukers. 1985. “On the Picard-Fuchs Equation and the Formal Brauer Group of Certain Elliptic $K3$-Surfaces.” Mathematische Annalen 271 (2): 269–304. doi:10.1007/BF01455990.
- Beukers, F., and C. A. M. Peters. 1984. “A Family of $K3$ Surfaces and $\zeta (3)$.” Journal Für Die Reine Und Angewandte Mathematik 351: 42–54. doi:10.1515/crll.1984.351.42.