"Calabi-Yau differential equations"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(section 'articles' updated)
imported>Pythagoras0
(section 'articles' updated)
4번째 줄: 4번째 줄:
  
 
==articles==
 
==articles==
 +
* Andreas Gerhardus, Hans Jockers, Quantum periods of Calabi-Yau fourfolds, arXiv:1604.05325 [hep-th], April 18 2016, http://arxiv.org/abs/1604.05325
 
* Charles F. Doran, Andreas Malmendier, Calabi-Yau manifolds realizing symplectically rigid monodromy tuples, http://arxiv.org/abs/1503.07500v2
 
* Charles F. Doran, Andreas Malmendier, Calabi-Yau manifolds realizing symplectically rigid monodromy tuples, http://arxiv.org/abs/1503.07500v2
 
* Zudilin, V. V. 2011. “Arithmetic Hypergeometric Series.” Rossi\uı Skaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 66 (2(398)): 163–216. doi:10.1070/RM2011v066n02ABEH004742.
 
* Zudilin, V. V. 2011. “Arithmetic Hypergeometric Series.” Rossi\uı Skaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 66 (2(398)): 163–216. doi:10.1070/RM2011v066n02ABEH004742.

2016년 4월 19일 (화) 18:15 판

expositions


articles

  • Andreas Gerhardus, Hans Jockers, Quantum periods of Calabi-Yau fourfolds, arXiv:1604.05325 [hep-th], April 18 2016, http://arxiv.org/abs/1604.05325
  • Charles F. Doran, Andreas Malmendier, Calabi-Yau manifolds realizing symplectically rigid monodromy tuples, http://arxiv.org/abs/1503.07500v2
  • Zudilin, V. V. 2011. “Arithmetic Hypergeometric Series.” Rossi\uı Skaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 66 (2(398)): 163–216. doi:10.1070/RM2011v066n02ABEH004742.
  • Yang, Yifan, and Wadim Zudilin. 2010. “On $\rm Sp_4$ Modularity of Picard-Fuchs Differential Equations for Calabi-Yau Threefolds.” In Gems in Experimental Mathematics, 517:381–413. Contemp. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2731075.
  • Chen, Yao-Han, Yifan Yang, and Noriko Yui. 2008. “Monodromy of Picard-Fuchs Differential Equations for Calabi-Yau Threefolds.” Journal Für Die Reine Und Angewandte Mathematik. [Crelle’s Journal] 616: 167–203. doi:10.1515/CRELLE.2008.021.
  • Almkvist, Gert, and Wadim Zudilin. 2006. “Differential Equations, Mirror Maps and Zeta Values.” In Mirror Symmetry. V, 38:481–515. AMS/IP Stud. Adv. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2282972.
  • Stienstra, Jan, and Frits Beukers. 1985. “On the Picard-Fuchs Equation and the Formal Brauer Group of Certain Elliptic $K3$-Surfaces.” Mathematische Annalen 271 (2): 269–304. doi:10.1007/BF01455990.
  • Beukers, F., and C. A. M. Peters. 1984. “A Family of $K3$ Surfaces and $\zeta (3)$.” Journal Für Die Reine Und Angewandte Mathematik 351: 42–54. doi:10.1515/crll.1984.351.42.