"Integer representation of finite groups"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (새 문서: * see book 'Invariant Theory of Finite Groups', 221p * if $G$ is a subgroup of $GL(n, \mathbb{Z})$, then the reduction mod an odd prime still gives a monomorphism $G \to GL(n, \mathbb...) |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
* see book 'Invariant Theory of Finite Groups', 221p | * see book 'Invariant Theory of Finite Groups', 221p | ||
* if $G$ is a subgroup of $GL(n, \mathbb{Z})$, then the reduction mod an odd prime still gives a monomorphism $G \to GL(n, \mathbb{Z}_p)$ | * if $G$ is a subgroup of $GL(n, \mathbb{Z})$, then the reduction mod an odd prime still gives a monomorphism $G \to GL(n, \mathbb{Z}_p)$ | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 19:48 판
- see book 'Invariant Theory of Finite Groups', 221p
- if $G$ is a subgroup of $GL(n, \mathbb{Z})$, then the reduction mod an odd prime still gives a monomorphism $G \to GL(n, \mathbb{Z}_p)$