"Integer representation of finite groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: * see book 'Invariant Theory of Finite Groups', 221p * if $G$ is a subgroup of $GL(n, \mathbb{Z})$, then the reduction mod an odd prime still gives a monomorphism $G \to GL(n, \mathbb...)
 
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
* see book 'Invariant Theory of Finite Groups', 221p
 
* see book 'Invariant Theory of Finite Groups', 221p
 
* if $G$ is a subgroup of $GL(n, \mathbb{Z})$, then the reduction mod an odd prime still gives a monomorphism $G \to GL(n, \mathbb{Z}_p)$
 
* if $G$ is a subgroup of $GL(n, \mathbb{Z})$, then the reduction mod an odd prime still gives a monomorphism $G \to GL(n, \mathbb{Z}_p)$
 +
[[분류:migrate]]

2020년 11월 13일 (금) 19:48 판

  • see book 'Invariant Theory of Finite Groups', 221p
  • if $G$ is a subgroup of $GL(n, \mathbb{Z})$, then the reduction mod an odd prime still gives a monomorphism $G \to GL(n, \mathbb{Z}_p)$