"곡선"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
6번째 줄: | 6번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> | ||
+ | |||
+ | * 매개화된 곡선 <math>\overrightarrow{r}(t)=(\cos t,\sin t, 3t)</math>. | ||
− | |||
− | |||
− | + | <h5>곡선의 길이</h5> | |
<math>(1,0,0)</math> 에서 <math>(1,0,6\pi)</math>까지의 곡선의 길이 | <math>(1,0,0)</math> 에서 <math>(1,0,6\pi)</math>까지의 곡선의 길이 | ||
− | |||
− | |||
− | |||
− | |||
At <math>(1,0,0)</math>, <math>t=0</math> and at <math>(1,0,6\pi)</math>, <math>t=2\pi</math> | At <math>(1,0,0)</math>, <math>t=0</math> and at <math>(1,0,6\pi)</math>, <math>t=2\pi</math> | ||
27번째 줄: | 23번째 줄: | ||
<math>|\overrightarrow{r}'(t)| =\sqrt{\sin^2 t+\cos^2 t +9}=\sqrt{10}</math> | <math>|\overrightarrow{r}'(t)| =\sqrt{\sin^2 t+\cos^2 t +9}=\sqrt{10}</math> | ||
− | + | 곡선의 길이는 다음과 같이 주어지게 된다 | |
<math>L=\int_{0}^{2\pi}|\overrightarrow{r}'(t)| \,dt=\int_{0}^{2\pi}\sqrt{10}\,dt=2\sqrt{10}\pi</math> | <math>L=\int_{0}^{2\pi}|\overrightarrow{r}'(t)| \,dt=\int_{0}^{2\pi}\sqrt{10}\,dt=2\sqrt{10}\pi</math> | ||
33번째 줄: | 29번째 줄: | ||
− | 곡률 | + | |
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">곡률</h5> | ||
+ | |||
+ | * 곡선의 방향의 변화를 재는 양<br> | ||
+ | * <br> | ||
<math>\overrightarrow{T}(t)=\frac{\overrightarrow{r}'(t)}{|\overrightarrow{r}'(t)|}=\frac{(-\sin t,\cos t, 3)}{\sqrt{10}}</math> | <math>\overrightarrow{T}(t)=\frac{\overrightarrow{r}'(t)}{|\overrightarrow{r}'(t)|}=\frac{(-\sin t,\cos t, 3)}{\sqrt{10}}</math> | ||
75번째 줄: | 76번째 줄: | ||
<h5>관련된 항목들</h5> | <h5>관련된 항목들</h5> | ||
+ | |||
+ | * [[이차곡선(원뿔곡선)]] | ||
+ | * [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분|렘니스케이트(lemniscate) 곡선과 타원적분]] | ||
+ | |||
+ | |||
2010년 10월 11일 (월) 12:24 판
이 항목의 스프링노트 원문주소
개요
- 매개화된 곡선 \(\overrightarrow{r}(t)=(\cos t,\sin t, 3t)\).
곡선의 길이
\((1,0,0)\) 에서 \((1,0,6\pi)\)까지의 곡선의 길이
At \((1,0,0)\), \(t=0\) and at \((1,0,6\pi)\), \(t=2\pi\)
\(\overrightarrow{r}'(t)=(-\sin t,\cos t, 3)\)
\(|\overrightarrow{r}'(t)| =\sqrt{\sin^2 t+\cos^2 t +9}=\sqrt{10}\)
곡선의 길이는 다음과 같이 주어지게 된다
\(L=\int_{0}^{2\pi}|\overrightarrow{r}'(t)| \,dt=\int_{0}^{2\pi}\sqrt{10}\,dt=2\sqrt{10}\pi\)
곡률
- 곡선의 방향의 변화를 재는 양
-
\(\overrightarrow{T}(t)=\frac{\overrightarrow{r}'(t)}{|\overrightarrow{r}'(t)|}=\frac{(-\sin t,\cos t, 3)}{\sqrt{10}}\)
\(\overrightarrow{T}'(t)=\frac{(-\cos t,-\sin t, 0)}{\sqrt{10}}\)
\(k=\frac{|\overrightarrow{T}'(t)|}{|\overrightarrow{r}'(t)|}=\frac{\frac{|(-\cos t,\sin t, 0)|}{\sqrt{10}}}{\sqrt{10}}=\frac{1}{10}\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.proofwiki.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)