"Theta divisor"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
(section 'articles' updated)
10번째 줄: 10번째 줄:
  
 
==articles==
 
==articles==
 +
* Humberto A. Diaz, The motive of a smooth Theta divisor, http://arxiv.org/abs/1603.04345v1
 
* Auffarth, Robert, Gian Pietro Pirola, and Riccardo Salvati Manni. “Torsion Points on Theta Divisors.” arXiv:1512.09296 [math], December 31, 2015. http://arxiv.org/abs/1512.09296.
 
* Auffarth, Robert, Gian Pietro Pirola, and Riccardo Salvati Manni. “Torsion Points on Theta Divisors.” arXiv:1512.09296 [math], December 31, 2015. http://arxiv.org/abs/1512.09296.
 
* Izadi, Elham, and Jie Wang. “The Irreducibility of the Primal Cohomology of the Theta Divisor of an Abelian Fivefold.” arXiv:1510.00046 [math], September 30, 2015. http://arxiv.org/abs/1510.00046.
 
* Izadi, Elham, and Jie Wang. “The Irreducibility of the Primal Cohomology of the Theta Divisor of an Abelian Fivefold.” arXiv:1510.00046 [math], September 30, 2015. http://arxiv.org/abs/1510.00046.

2016년 3월 16일 (수) 00:30 판

introduction

  • It is a well known fact that the Theta divisor on the Jacobian of a non-singular curve is a determinantal variety, i.e. is defined by the zero set of a determinant.
  • It is a classical result that the evaluation at the n-torsion points, $n\geq 4$ of Riemann's theta function completely determines the abelian variety embedded in $\mathbb{P}^{n^g-1}$. (See Mumford's Tata lectures 3)


expositions

  • Grushevsky, Samuel, and Klaus Hulek. “Geometry of Theta Divisors --- a Survey.” arXiv:1204.2734 [math], April 12, 2012. http://arxiv.org/abs/1204.2734.


articles