"3-manifolds and their invariants"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 three-manifolds로 바꾸었습니다.)
(피타고라스님이 이 페이지의 이름을 three-manifolds and their invariants로 바꾸었습니다.)
(차이 없음)

2010년 4월 5일 (월) 11:33 판

introduction
  • volume of knot complements
  • Chern-Simons invariant of manifolds

 

 

Volume of knot complement
  1. KnotData[]
    KnotData["FigureEight", "HyperbolicVolume"]
    N[%, 20]
  • Dedekind zeta funciton evaluated at 2 gives a number related to volume of 3-manifold
  • Bloch-Wigner dilogarithm is involved

 

 

an open problem
  • Prove
    \(\frac{24}{7\sqrt{7}}\int_{\pi/3}^{\pi/2}\ln|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}|\,dt=\frac{2}{\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=\frac{2}{\sqrt{7}}(Cl(2\pi /7})+Cl(4\pi/7})-Cl(6\pi/7}))\)
  • an open problem in integration

 

 

software

 

 

history

 

 

 

하위페이지

 

 

 

related items

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links