"3-manifolds and their invariants"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 three-manifolds and their invariants로 바꾸었습니다.)
22번째 줄: 22번째 줄:
  
 
*  Prove<br><math>\frac{24}{7\sqrt{7}}\int_{\pi/3}^{\pi/2}\ln|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}|\,dt=\frac{2}{\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=\frac{2}{\sqrt{7}}(Cl(2\pi /7})+Cl(4\pi/7})-Cl(6\pi/7}))</math><br>
 
*  Prove<br><math>\frac{24}{7\sqrt{7}}\int_{\pi/3}^{\pi/2}\ln|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}|\,dt=\frac{2}{\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=\frac{2}{\sqrt{7}}(Cl(2\pi /7})+Cl(4\pi/7})-Cl(6\pi/7}))</math><br>
* [[5478337|an open problem in integration]]<br>
+
* [[a log tangent integral|problems in integrals]]<br>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5 style="line-height: 2em; margin: 0px;">Reshetikihn, Turaev</h5>
 +
 
 +
 
  
 
 
 
 
55번째 줄: 63번째 줄:
 
** [[triangulations and Bloch group]]<br>
 
** [[triangulations and Bloch group]]<br>
 
** [[volume of hyperbolic threefolds and L-values|volume of hyperbolic 3-manifolds and L-values]]<br>
 
** [[volume of hyperbolic threefolds and L-values|volume of hyperbolic 3-manifolds and L-values]]<br>
 
 
 
  
 
 
 
 
98번째 줄: 104번째 줄:
 
* [http://arxiv.org/abs/hep-th/9811173 Determinations of rational Dedekind-zeta invariants of hyperbolic manifolds and Feynman knots and links]<br>
 
* [http://arxiv.org/abs/hep-th/9811173 Determinations of rational Dedekind-zeta invariants of hyperbolic manifolds and Feynman knots and links]<br>
 
** J.M. Borwein, D.J. Broadhurst, 1998
 
** J.M. Borwein, D.J. Broadhurst, 1998
 +
*  Three-manifolds and the Temperley-Lieb algebra<br>
 +
** W. B. R. Lickorish, 1991
  
 
* [[2010년 books and articles|논문정리]]
 
* [[2010년 books and articles|논문정리]]

2010년 7월 17일 (토) 14:23 판

introduction
  • volume of knot complements
  • Chern-Simons invariant of manifolds

 

 

Volume of knot complement
  1. KnotData[]
    KnotData["FigureEight", "HyperbolicVolume"]
    N[%, 20]
  • Dedekind zeta funciton evaluated at 2 gives a number related to volume of 3-manifold
  • Bloch-Wigner dilogarithm is involved

 

 

an open problem
  • Prove
    \(\frac{24}{7\sqrt{7}}\int_{\pi/3}^{\pi/2}\ln|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}|\,dt=\frac{2}{\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=\frac{2}{\sqrt{7}}(Cl(2\pi /7})+Cl(4\pi/7})-Cl(6\pi/7}))\)
  • problems in integrals

 

 

Reshetikihn, Turaev

 

 

 

software

 

 

history

 

 

 

하위페이지

 

 

related items

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links