"3-manifolds and their invariants"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/6169407">1 mathematical physics 2</a>페이지로 이동하였습니다.)
106번째 줄: 106번째 줄:
 
*  Three-manifolds and the Temperley-Lieb algebra<br>
 
*  Three-manifolds and the Temperley-Lieb algebra<br>
 
** W. B. R. Lickorish, 1991
 
** W. B. R. Lickorish, 1991
 +
* [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions]<br>
 +
** Don Zagier, Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월
  
 
* [[2010년 books and articles|논문정리]]
 
* [[2010년 books and articles|논문정리]]

2010년 7월 31일 (토) 18:10 판

introduction
  • volume of knot complements
  • Chern-Simons invariant of manifolds

 

 

Volume of knot complement
  1. KnotData[]
    KnotData["FigureEight", "HyperbolicVolume"]
    N[%, 20]
  • Dedekind zeta funciton evaluated at 2 gives a number related to volume of 3-manifold
  • Bloch-Wigner dilogarithm is involved

 

 

an open problem
  • Prove
    \(\frac{24}{7\sqrt{7}}\int_{\pi/3}^{\pi/2}\ln|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}|\,dt=\frac{2}{\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=\frac{2}{\sqrt{7}}(Cl(2\pi /7})+Cl(4\pi/7})-Cl(6\pi/7}))\)
  • problems in integrals

 

 

Reshetikihn, Turaev

 

 

 

software

 

 

history

 

 

 

하위페이지

 

 

related items

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links