"Step function potential scattering"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5>introduction</h5>
 
<h5>introduction</h5>
 +
 +
* [[#]]
 +
 +
<math>E \psi = -\frac{\hbar^2}{2m}{\partial^2 \psi \over \partial x^2} + V(x)\psi</math>
  
 
*  Let the potential is given by<br><math>\psi(x) = \begin{cases} V_{-} & \text{ if } x<0; \\ V_{+}, & \text{ if } x>0, \end{cases}</math><br>
 
*  Let the potential is given by<br><math>\psi(x) = \begin{cases} V_{-} & \text{ if } x<0; \\ V_{+}, & \text{ if } x>0, \end{cases}</math><br>

2011년 2월 11일 (금) 03:10 판

introduction

\(E \psi = -\frac{\hbar^2}{2m}{\partial^2 \psi \over \partial x^2} + V(x)\psi\)

  • Let the potential is given by
    \(\psi(x) = \begin{cases} V_{-} & \text{ if } x<0; \\ V_{+}, & \text{ if } x>0, \end{cases}\)
  • solution of the stationary S
    \(\psi(x) = \begin{cases} \psi_{\mathrm L}(x) = A_{\mathrm r}e^{ik_{0}x} + A_{\mathrm l}e^{-ik_{0}x}, & \text{ if } x<0; \\ \psi_{\mathrm R}(x) = B_{\mathrm r}e^{ik_{1}x} + B_{\mathrm l}e^{-ik_{1x}, & \text{ if } x>0, \end{cases}\)
  • we impose two conditions on the wave function
    •  the wave function be continuous in the origin
    •  integrate the Schrödinger equation around x = 0, over an interval [−ε, +ε] and In the limit as ε → 0, the right-hand side of this equation vanishes; the left-hand side becomes
  • first condition
    \(\psi(0) =\psi_L(0) = \psi_R(0) = A_r + A_l = B_r + B_l\)
    \(A_r + A_l - B_r - B_l = 0\)
  • second condition
    \( -\frac{\hbar^2}{2 m} \int_{-\epsilon}^{+\epsilon} \psi''(x) \,dx + \int_{-\epsilon}^{+\epsilon} V(x)\psi(x) \,dx = E \int_{-\epsilon}^{+\epsilon} \psi(x) \,dx\)
    LHS becomes \(-\frac{\hbar^2}{2m}[\psi_R'(0)-\psi_L'(0)] +\lambda\psi(0)\)
    RHS becomes 0
    \(-A_r + A_l + B_r - B_l =\frac{2m\lambda}{ik\hbar^2}(A_r + A_l)\)
  • the coefficient must satisfy
    \(A_r + A_l - B_r - B_l = 0\)
    \(-A_r + A_l + B_r - B_l =\frac{2m\lambda}{ik\hbar^2}(A_r + A_l)\)

 

 

delta potential scattering

 

  • special case of scattering problem \(A_r=1, A_l=r, B_r=t , B_l = 0\)
  • wave function
    \(\psi(x) = \begin{cases} \psi_{\mathrm L}(x) = e^{ikx} + re^{-ikx}, & \text{ if } x<0; \\ \psi_{\mathrm R}(x) =te^{ikx} , & \text{ if } x>0, \end{cases}\)

 

  • \(t-r=1\)
    \(t=\cfrac{1}{1-\cfrac{m\lambda}{i\hbar^2k}}\,\!\)
    \(r=\cfrac{1}{\cfrac{i\hbar^2 k}{m\lambda} - 1}\,\!\)
    \(R=|r|^2=\cfrac{1}{1+\cfrac{\hbar^4k^2}{m^2\lambda^2}}= \cfrac{1}{1+\cfrac{2\hbar^2 E}{m\lambda^2}}.\,\!\)
    \(T=|t|^2=1-R=\cfrac{1}{1+\cfrac{m^2\lambda^2}{\hbar^4k^2}}= \cfrac{1}{1+\cfrac{m \lambda^2}{2\hbar^2 E}}\,\!\)

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links