"르장드르 다항식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
144번째 줄: 144번째 줄:
  
 
* Yajun Zhou, Two Definite Integrals Involving Products of Four Legendre Functions, http://arxiv.org/abs/1603.03547v1
 
* Yajun Zhou, Two Definite Integrals Involving Products of Four Legendre Functions, http://arxiv.org/abs/1603.03547v1
 +
 +
== 메타데이터 ==
 +
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q215405 Q215405]

2020년 12월 28일 (월) 06:33 판

개요

  • 르장드르 미분방정식의 해로 얻어지는 다항식 \(P_n(x), \, n\in \mathbb{Z}_{\geq 0}\)
  • 구간 \([-1,1]\)에서 \(\text{L}^2\) 내적에 의해 직교성을 가짐
  • 물리학에서 많이 등장하는 다항식의 하나
  • 자코비 다항식 \(P_n^{(\alpha ,\beta )}(x)\)의 특수한 경우로 얻어지며 \(P_n(x)=P_n^{(0,0)}(x)\)이 성립


르장드르 미분방정식


로드리게즈 공식

  • 르장드르 다항식을 얻는 직접적인 방법

\[P_n(x) =\frac{1}{2^n n!} {d^n \over dx^n } \left[ (x^2 -1)^n \right]\]


3항 점화식

\(P_0(x)=1\), \(P_1(x)=x\)

\((n+1) P_{n+1}(x) = (2n+1) x P_n(x) - n P_{n-1}(x)\)



생성함수

  • 생성함수\[\frac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^\infty P_n(x) t^n = 1+x t+\left(-\frac{1}{2}+\frac{3 x^2}{2}\right) t^2+\left(-\frac{3 x}{2}+\frac{5 x^3}{2}\right) t^3+\frac{1}{8} \left(3-30 x^2+35 x^4\right) t^4+\frac{1}{8} \left(15 x-70 x^3+63 x^5\right) t^5+\cdots\]



부분적분에의 응용

정리

\(n\geq 1\) 일 때, n번 미분가능한 함수 \(f\)에 대하여 다음이 성립한다. \[\int_{-1}^1P_n(x)f(x)\,dx=\frac{(-1)^{n}}{2^n n!}\int_{-1}^1 (x^2-1)^nf^{(n)}(x)\,dx.\]

증명

\(Q(x)=(x^2-1)^n\) 라 두자.

\(0\leq k < n\) 일 때 \(Q^{(k)}(-1)=Q^{(k)}(1)=0\)이므로. 부분적분을 반복적용하면 다음을 얻는다. \[\int_{-1}^1Q^{(n)}(x)f(x)\,dx=-\int_{-1}^1Q^{(n-1)}(x)f'(x)\,dx=\cdots=(-1)^n \int_{-1}^1 Q(x)f^{(n)}(x)\,dx\]

\(P_n(x) =\frac{Q^{(n)}(x)}{2^n n!}\) 이므로 증명되었다. ■


직교성

정리

\[\int_{-1}^{1}P_{n}(x)P_{m}(x)\,dx=\frac{2}{2n+1}\delta_{n,m}\]


증명

\(n>m\) 이라 가정하자. \[\int_{-1}^{1}P_{n}(x)P_{m}(x)\,dx=\frac{(-1)^{n}}{2^n n!}\int_{-1}^1 x^{n}(x^2-1)^nP_{m}^{(n)}(x)\,dx\]

위에서 증명한 성질을 응용하였다.

한편 \(P_{m}(x)\)는 차수가 m인 다항식이므로, n번 미분하면 항등적으로 0이 된다. 따라서, \[\int_{-1}^{1}P_{n}(x)P_{m}(x)\,dx=0\]

이제 \(n=m\) 이라 가정하자.

\[\int_{-1}^{1}P_{n}(x)P_{n}(x)\,dx=\frac{(-1)^{n}}{2^n n!}\int_{-1}^1 (x^2-1)^nP_{n}^{(n)}(x)\,dx=\frac{(-1)^{n}}{2^n n!}\frac{(2n)!}{2^n n!}\int_{-1}^1 (x^2-1)^n\,dx\]

한편,

\[\int_{-1}^1 (x^2-1)^n \,dx=(-1)^n\int_{-1}^1 (1-x^2)^n \,dx=(-1)^n 2^{2n+1}\int_0^1 t^n(1-t)^n\,dt=(-1)^n 2^{2n+1} B(n+1,n+1)=(-1)^n2^{2n+1}\frac{(n!)^2}{(2n+1)!}\]

여기서 \(B(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,dt\) 는 오일러 베타적분(베타함수) 이다.

따라서 \[\int_{-1}^{1}P_{n}(x)P_{n}(x)\,dx=\frac{2}{2n+1}.\]■


목록

\[ \begin{array}{c|c} n & P_n(x) \\ \hline 0 & 1 \\ 1 & x \\ 2 & \frac{1}{2} \left(3 x^2-1\right) \\ 3 & \frac{1}{2} \left(5 x^3-3 x\right) \\ 4 & \frac{1}{8} \left(35 x^4-30 x^2+3\right) \\ 5 & \frac{1}{8} \left(63 x^5-70 x^3+15 x\right) \\ 6 & \frac{1}{16} \left(231 x^6-315 x^4+105 x^2-5\right) \\ 7 & \frac{1}{16} \left(429 x^7-693 x^5+315 x^3-35 x\right) \\ 8 & \frac{1}{128} \left(6435 x^8-12012 x^6+6930 x^4-1260 x^2+35\right) \\ 9 & \frac{1}{128} \left(12155 x^9-25740 x^7+18018 x^5-4620 x^3+315 x\right) \\ 10 & \frac{1}{256} \left(46189 x^{10}-109395 x^8+90090 x^6-30030 x^4+3465 x^2-63\right) \\ \end{array} \]


역사



메모


관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료

관련논문

메타데이터

위키데이터