"P진 L-함수 (p-adic L-function)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (→관련논문) |
imported>Pythagoras0 (→관련논문) |
||
33번째 줄: | 33번째 줄: | ||
==관련논문== | ==관련논문== | ||
+ | * Bruinier, Jan Hendrik, and Yingkun Li. “Heegner Divisors in Generalized Jacobians and Traces of Singular Moduli.” arXiv:1508.07112 [math], August 28, 2015. http://arxiv.org/abs/1508.07112. | ||
* Banerjee, Debargha, and A. Raghuram. ‘P-Adic L-Functions for GL(n)’. arXiv:1503.01283 [math], 4 March 2015. http://arxiv.org/abs/1503.01283. | * Banerjee, Debargha, and A. Raghuram. ‘P-Adic L-Functions for GL(n)’. arXiv:1503.01283 [math], 4 March 2015. http://arxiv.org/abs/1503.01283. | ||
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa40/aa4019.pdf The derivative of p-adic L-functions] | * [http://matwbn.icm.edu.pl/ksiazki/aa/aa40/aa4019.pdf The derivative of p-adic L-functions] |
2015년 8월 30일 (일) 19:56 판
개요
- 디리클레 L-함수
- analytic p-adic L-functions.
- arithmetic p-adic L-function
메모
- http://mathoverflow.net/questions/22301/p-adic-l-functions
- http://mathoverflow.net/questions/43846/p-adic-l-functions
- http://mathoverflow.net/questions/13287/special-values-of-p-adic-l-functions
- Kubota-Leopoldt p-adic L-functions
관련된 항목들
사전 형태의 자료
리뷰, 강의노트
- http://math.stanford.edu/~conrad/DarmonCM/2011Notes/dirichlet.pdf
- Bertolini, Regulators,L-functions and rational points
관련논문
- Bruinier, Jan Hendrik, and Yingkun Li. “Heegner Divisors in Generalized Jacobians and Traces of Singular Moduli.” arXiv:1508.07112 [math], August 28, 2015. http://arxiv.org/abs/1508.07112.
- Banerjee, Debargha, and A. Raghuram. ‘P-Adic L-Functions for GL(n)’. arXiv:1503.01283 [math], 4 March 2015. http://arxiv.org/abs/1503.01283.
- The derivative of p-adic L-functions
- Koblitz, Neal. ‘A New Proof of Certain Formulas for $p$-Adic $L$-Functions’. Duke Mathematical Journal 46, no. 2 (197906): 455–68. doi:10.1215/S0012-7094-79-04621-0
- On the values of p-adic L-functions at positive integers
- Jack Diamond, Acta Arith. 35 (1979), 223-237
- T. Kubota and H. W. Leopoldt, Eine $p$-adische Theorie der Zetawerte. I. Einführung der $p$-adischen Dirichletschen $L$-Funktionen, J. Reine Angew. Math. 214/215 (1964), 328–339