"그리스문자 및 특수문자모음"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
18번째 줄: 18번째 줄:
  
 
[http://bomber0.byus.net/mimetex/mimetex.cgi? http://bomber0.byus.net/mimetex/mimetex.cgi?\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx]+[http://bomber0.byus.net/mimetex/mimetex.cgi? \int_0^y{\frac{1}{\sqrt{1-x^2}}}dx] = [http://bomber0.byus.net/mimetex/mimetex.cgi? \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx]
 
[http://bomber0.byus.net/mimetex/mimetex.cgi? http://bomber0.byus.net/mimetex/mimetex.cgi?\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx]+[http://bomber0.byus.net/mimetex/mimetex.cgi? \int_0^y{\frac{1}{\sqrt{1-x^2}}}dx] = [http://bomber0.byus.net/mimetex/mimetex.cgi? \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx]
 +
 +
[http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=e%5Ex%20e%5Ey%3D%20e%5E%7Bx%2By%7D ]
 +
 +
[http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=%5Csin%20%5Cleft%28x%2By%5Cright%29%3D%5Csin%20x%20%5Ccos%20y%20%2B%20%5Ccos%20x%20%5Csin%20y%5C ]
 +
 +
[http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=%5Ctan%28%5Ctheta_1%2B%5Ctheta_2%29%3D%5Cfrac%7B%5Ctan%5Ctheta_1%2B%5Ctan%5Ctheta_2%7D%7B1-%5Ctan%5Ctheta_1%5Ctan%5Ctheta_2%7D ]
 +
 +
 
 +
 +
[http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=%5Cln%20x%20%2B%20%5Cln%20y%3D%20%5Cln%20xy ]
 +
 +
[http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=%5Carcsin%20x%2B%5Carcsin%20y%3D%5Carcsin%20%28x%5Csqrt%7B1-y%5E2%7D%2By%5Csqrt%7B1-x%5E2%7D%29 ]
 +
 +
[http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=%5Carctan%20x%2B%5Carctan%20y%20%3D%20%5Carctan%7B%5Cfrac%7Bx%2By%7D%7B1-xy%7D%7D ]
 +
 +
 
  
 
 
 
 
36번째 줄: 52번째 줄:
  
 
# [http://bomber0.byus.net/mimetex/mimetex.cgi?aaa%5Cldotsbbb%5Ccdotsccc%5Cvdotsddd%5Cddots aaa\ldotsbbb\cdotsccc\vdotsddd\ddots]
 
# [http://bomber0.byus.net/mimetex/mimetex.cgi?aaa%5Cldotsbbb%5Ccdotsccc%5Cvdotsddd%5Cddots aaa\ldotsbbb\cdotsccc\vdotsddd\ddots]
 +
 +
 
 +
 +
\mathfrak{g} <math>\mathfrak{g}</math>
 +
 +
 
 
----
 
----
  
471번째 줄: 493번째 줄:
 
|-
 
|-
 
|  
 
|  
|
 
 
|  
 
|  
|  
+
|  
 +
|  
 
|-
 
|-
 
| x+y+z
 
| x+y+z

2009년 6월 11일 (목) 12:50 판

연습해보는 곳

http://bomber0.byus.net/mimetex/mimetex.cgi?\frac{az+b}{cz+d}

http://bomber0.byus.net/mimetex/mimetex.cgi?\arcsin x+arcsin y=arcsin (x \sqrt{1-y^2}+y \sqrt{1-x^2})

 

\(\arcsin x+ \arcsin y=\arcsin (x \sqrt{1-y^2}+y \sqrt{1-x^2})\)

 

 

\(\ln x + \ln y= \ln xy\)

\(\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx = \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx

[1]

[2]

[3]

 

[4]

[5]

[6]

 

 

[7]

 

[8]

[9]

http://bomber0.byus.net/mimetex/mimetex.cgi?\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}

 

\(aaa\ldots bbb\cdots ccc\vdots ddd\ddots\)

  1. aaa\ldotsbbb\cdotsccc\vdotsddd\ddots

 

\mathfrak{g} \(\mathfrak{g}\)

 



\alpha \iota \varrho
\beta \kappa \sigma
\gamma \lambda \varsigma
\delta \mu \tau
\epsilon \nu \upsilon
\varepsilon \xi \phi
\zeta o o \varphi
\eta \pi \chi
\theta \varpi \psi
\vartheta \rho \omega
 
\Gamma \Xi \Phi
\Delta \Pi \Psi
\Theta \Sigma \Omega
\Lambda \Upsilon

 

\aleph \prime \forall
h \hbar \emptyset \exists
\imath \nabla \neg
\jmath \surd \flat
\ell \top \natural
\wp \bot \sharp
\Re \clubsuit
\Im \angle \diamondsuit
\partial \triangle \heartsuit
\infty \backslash \spadesuit
\ldots \cdots \vdots \ddots

 

arcsin \arcsin dim \dim log \log
arccos \arccos exp \exp max \max
arctan \arctan gcd \gcd min \min
arg \arg hom \hom Pr \Pr
cos \cos inf \inf sec \sec
cosh \cosh ker \ker sin \sin
cot \cot lg \lg sinh \sinh
coth \coth lim \lim sup \sup
csc \csc liminf \liminf tan \tan
deg \deg limsup \limsup tanh \tanh
det \det ln \ln

 

\sum \bigcap \bigodot
\prod \bigcup \bigotimes
\coprod \bigsqcup \bigoplus
\int \bigvee \biguplus
\oint \bigwedge
\pm \cap \vee
\mp \cup \wedge
\setminus \uplus \oplus
\cdot \sqcap \ominus
\times \sqcup \otimes
\ast \triangleleft \oslash
\star \triangleright \odot
\diamond \wr \dagger
\circ \bigcirc \ddagger
\bullet \bigtriangleup \amalg
\div \bigtriangledown

Delimiters


  normal:()[]()  

  \big:  

  \Big:  

  \bigg:  

  \Bigg:  


Marks above and below:

 

 

       
x+y+z \overline{x+y+z}
  \underline{x+y+z} x+y+z
x++xktimes \overbrace{x+\cdots+x}^{k\;\rm times}
  \underbrace{x+\cdots+x}_{k\;\rm times} x++xktimes
−−−−−−−−−−x1++xk \overleftarrow{x_1+\cdots+x_k}
  \overrightarrow{x_1+\cdots+x_k} −−−−−−−−−−x1++xk
{n \choose 2}   2n  
{n \brack 2}   2n  
{n \brace 2}   2n  
f(x)=\cases {
      x^2+1&\text{if $x<0$}\cr
      1-x&\text{otherwise}
}
  f(x)=\cases{x^2+1&\text{if $x<0$}\cr 1-x&\text{otherwise}}  
\pmatrix{1& 0\\ 0& 1}   1001

 

 

h]  

a2−b21−12ab

 

= \ne or \neq (same as \not=) \dagger
\le (same as \leq) \ddagger
\ge (same as \geq)
\{ (same as \lbrace)
\} (same as \rbrace)
\to (same as \rightarrow)
\gets (same as \leftarrow)
\owns (same as \ni)
\land (same as \wedge)
\lor (same as \vee)
\lnot (same as \neg)
(same as \vert)
(same as \Vert)

http://www.math.union.edu/~dpvc/jsmath/symbols/welcome.html 에서 가져옴.