"다이로그 함수(dilogarithm)"의 두 판 사이의 차이
27번째 줄: | 27번째 줄: | ||
<h5>곱셈공식</h5> | <h5>곱셈공식</h5> | ||
− | * 제곱공식<br><math>\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))</math><br> | + | * 제곱공식<br><math>\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))</math><br><math>\frac{1}{2}\mbox{Li}_2(x^2)=\mbox{Li}_2(x)+\mbox{Li}_2(-x)</math><br> |
* 일반적인 곱셈공식<br><math>\frac{1}{n} \operatorname{Li}_2(z^n) = \sum_{k=0}^{n-1}\operatorname{Li}_2\left(e^{2\pi i k/n}z\right)</math><br> | * 일반적인 곱셈공식<br><math>\frac{1}{n} \operatorname{Li}_2(z^n) = \sum_{k=0}^{n-1}\operatorname{Li}_2\left(e^{2\pi i k/n}z\right)</math><br> | ||
− | |||
− | |||
40번째 줄: | 38번째 줄: | ||
<h5>Special values</h5> | <h5>Special values</h5> | ||
− | 다음 | + | * 다음 여덟 경우만이 알려져 있음. |
<math>\mbox{Li}_{2}(0)=0</math> | <math>\mbox{Li}_{2}(0)=0</math> | ||
95번째 줄: | 93번째 줄: | ||
이제 위에서 얻어진 두 식을 통해 원하는 값을 계산할 수 있다. | 이제 위에서 얻어진 두 식을 통해 원하는 값을 계산할 수 있다. | ||
− | |||
− | |||
− | |||
− | |||
* <math>\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})</math> 의 계산 | * <math>\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})</math> 의 계산 | ||
113번째 줄: | 107번째 줄: | ||
반전공식에 <math>x=\frac{-1-\sqrt{5}}{2}</math>를 대입하면, <math>\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2}) =\frac{\pi^2}{6}-\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math> 를 얻는다. | 반전공식에 <math>x=\frac{-1-\sqrt{5}}{2}</math>를 대입하면, <math>\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2}) =\frac{\pi^2}{6}-\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math> 를 얻는다. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>다른 special values</h5> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\frac{1}{2}\mbox{Li}_2(x^2)=\mbox{Li}_2(x)+\mbox{Li}_2(-x)</math> | ||
+ | |||
+ | <math>\int_0^{\pi}\frac{x\cos x}{1+\sin^2 x}dx=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}</math> | ||
134번째 줄: | 140번째 줄: | ||
* [[리만제타함수|리만제타함수와 리만가설]] | * [[리만제타함수|리만제타함수와 리만가설]] | ||
* [[감마함수]] | * [[감마함수]] | ||
+ | * [[르장드르 카이 함수]] | ||
2009년 10월 8일 (목) 07:52 판
간단한 소개
- dilogarithm 함수는 복소수 \(|z|<1\)에 대하여 다음과 같이 정의됨
\(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt = \sum_{n=1}^\infty {z^n \over n^2}\)
여러가지 항등식
오일러의 반사공식
\(\mbox{Li}_2 \left(x \right)+\mbox{Li}_2 \left(1-x \right)= \frac{\pi^2}{6}-\ln(x)\ln(1-x)\), \(0<x<1\)
반전공식
\(\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}\log^2(-x)\)
란덴의 항등식
\(\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{-x}{1-x} \right)=-\frac{1}{2}\log^2(1-x), x<1\)
곱셈공식
- 제곱공식
\(\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))\)
\(\frac{1}{2}\mbox{Li}_2(x^2)=\mbox{Li}_2(x)+\mbox{Li}_2(-x)\) - 일반적인 곱셈공식
\(\frac{1}{n} \operatorname{Li}_2(z^n) = \sum_{k=0}^{n-1}\operatorname{Li}_2\left(e^{2\pi i k/n}z\right)\)
Special values
- 다음 여덟 경우만이 알려져 있음.
\(\mbox{Li}_{2}(0)=0\)
\(\mbox{Li}_{2}(1)=\frac{\pi^2}{6}\)
\(\mbox{Li}_{2}(-1)=-\frac{\pi^2}{12}\)
\(\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)\)
\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\)
\(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)
\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)
\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)
special value의 계산
- \(\mbox{Li}_{2}(-1)\) 의 계산
반전공식에 \(x=-1\) 을 대입하여 얻을 수 있다.
- \(\mbox{Li}_{2}(\frac{1}{2})\) 의 계산
오일러의 반사공식에서 \(x=\frac{1}{2}\) 를 대입하여 얻을 수 있다.
- \(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})\) 과 \(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})\) 의 계산
오일러의 반사공식에 \(x=\frac{3-\sqrt{5}}{2}\)을 대입하면 다음을 얻는다.
\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =\frac{\pi^2}{6}-\log(\frac{-1+\sqrt{5}}{2})\log(\frac{3-\sqrt{5}}{2})\)
란덴의 항등식과 제곱공식을 활용하면 다음과 같은 항등식을 얻을 수 있다.
\(\mbox{Li}_2 (\frac{-x}{1-x})+\frac{1}{2}\mbox{Li}_2(x^2)-\mbox{Li}_2(-x) =-\frac{1}{2}(\log(1-x))^2\)
여기에 \(x=\frac{1-\sqrt{5}}{2}\)을 대입하면 다음을 얻는다.
\(\frac{3}{2}\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})-\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =-\log^2(\frac{1+\sqrt{5}}{2})\)
이제 위에서 얻어진 두 식을 통해 원하는 값을 계산할 수 있다.
- \(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})\) 의 계산
제곱공식\(\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))\) 에 \(x=\frac{1-\sqrt{5}}{2}\) 를 대입하면,
\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2}) =2(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}))\) 를 얻는다.
- \(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})\) 의 계산
반전공식에 \(x=\frac{-1-\sqrt{5}}{2}\)를 대입하면, \(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2}) =\frac{\pi^2}{6}-\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\) 를 얻는다.
다른 special values
\(\frac{1}{2}\mbox{Li}_2(x^2)=\mbox{Li}_2(x)+\mbox{Li}_2(-x)\)
\(\int_0^{\pi}\frac{x\cos x}{1+\sin^2 x}dx=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)
재미있는 사실
- Don Zagier
The dilogarithm is the only mathematical function with a sense of humor.
관련된 다른 주제들
수학용어번역
- 제안용어
- 쌍로그, 이중로그 ??
- http://www.google.com/dictionary?langpair=en%7Cko&q=di
- 대한수학회 수학 학술 용어집
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://en.wikipedia.org/wiki/Polylogarithm
- http://en.wikipedia.org/wiki/Dilogarithm
- http://en.wikipedia.org/wiki/Multiplication_theorem
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
관련도서 및 추천도서
- Frontiers in number theory, physics, and geometry II
- Cartier P., Julia B., Moussa P., Vanhove P.
- Polylogarithms and associated functions
- Lewin L
- 도서내검색
- 도서검색
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=