"등시강하곡선 문제 (Tautochrone problem)"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “* [http://navercast.naver.com/science/list ” 문자열을 “” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “* [http://navercast.naver.com/science/list ” 문자열을 “” 문자열로) |
(차이 없음)
|
2012년 11월 2일 (금) 08:36 판
이 항목의 스프링노트 원문주소
개요
- 중력을 받고 있는 물체가 출발점에 관계없이 주어진 목적지에 똑같은 시간에 도달하기 위해서 따라야 하는 곡선
- 사이클로이드에 의하여 만족됨
- 1659년 호이겐스에 의해 해결
- 진자 시계를 만드는데 활용되었다 http://hom.wikidot.com/the-cycloid
등시성의 증명
[/pages/4402517/attachments/2339131 Tautochrone_curve(1).gif]
(정리) 사이클로이드를 따라 움직이는 추의 주기는 시작점의 위치에 관계없이 다음으로 주어진다.
\(T =2\pi\sqrt{\frac{r}{g}}\)
(이 때, 사이클로이드의 방정식은 \(x = r(\theta - \sin \theta)\), \(y = -r(1 - \cos \theta)\)로 주어졌다고 하자.)
(증명)
출발점의 y좌표를 \(y=y_0\)라 두고, 그 때 곡선의 파라메터를 \(\theta=\theta_0\)라 하자.
움직이는 추의 속도는 \(v=\sqrt{2g(y_0-y)}= \sqrt{2rg(\cos\theta_0-\cos\theta)}\) 로 주어진다. 따라서 주기를 다음과 같이 쓸 수 있다.
\(T =\int \frac{ds}{v}=2\int_{\theta_0}^{\pi} \frac{\sqrt{2r^2(1-\cos\theta)}}{\sqrt{2rg(\cos\theta_0-\cos\theta)}}\,d\theta=2\sqrt{\frac{r}{g}}\int_{\theta_0}^{\pi} \frac{\sqrt{1-\cos\theta}}{\sqrt{\cos\theta_0-\cos\theta}}\,d\theta\)
반각공식을 이용하여, 우변을
\(2\sqrt{\frac{r}{g}}\int_{\theta_0}^{\pi}\frac{\sin(\frac{1}{2}\theta)}{\sqrt{\cos^2(\frac{1}{2}\theta_0)-\cos^2(\frac{1}{2}\theta)}}d\theta \) 로 쓸 수 있다.
\(u=\frac{\cos \frac{1}{2}\theta}{\cos \frac{1}{2}\theta_0}\)로 치환하면, \(du=\frac{-\sin \frac{1}{2}\theta}{2\cos \frac{1}{2}\theta_0}\,d\theta\) 를 얻는다.
따라서
\(T =4\sqrt{\frac{r}{g}}\int_{0}^{1} \frac{1}{\sqrt{1-u^2}}\,du=2\pi\sqrt{\frac{r}{g}}\)■
관련동영상
재미있는 사실
- http://www.baropage.com/file_board/view.php?id=life02&page=1&sn1=&divpage=1&sn=off&ss=on&sc=on&select_arrange=hit&desc=desc&no=95
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
- http://www.math.nmsu.edu/~history/mm-3-2-huygens.pdf
- Christiaan Huygens and the Scientific Revolution
관련된 항목들
수학용어번역
- Tautochrone problem
- 등시강하곡선 문제
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://en.wikipedia.org/wiki/Tautochrone_problem
- http://mathworld.wolfram.com/TautochroneProblem.html
- http://en.wikipedia.org/wiki/
- http://www.proofwiki.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- The Cycloidal Pendulum
- Jeff Brooks and Satha Push, The American Mathematical Monthly Vol. 109, No. 5 (May, 2002), pp. 463-465
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/
링크
네이버 ]