"라그랑지의 네 제곱수 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">간단한 소개</h5>
+
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
  
 
*  모든 자연수는 네 개의 제곱수의 합으로 표현가능하다<br>
 
*  모든 자연수는 네 개의 제곱수의 합으로 표현가능하다<br>
18번째 줄: 18번째 줄:
  
 
* <math>3 &= 1^2 + 1^2 + 1^2 + 0^2</math><br>
 
* <math>3 &= 1^2 + 1^2 + 1^2 + 0^2</math><br>
*  <br>
+
* <math>31 &= 5^2 + 2^2 + 1^2 + 1^2</math><br>
 
+
* <math>310 &= 17^2 + 4^2 + 2^2 + 1^2</math><br>
<math>\begin{align} 3 &= 1^2 + 1^2 + 1^2 + 0^2\\ 31 &= 5^2 + 2^2 + 1^2 + 1^2\\ 310 &= 17^2 + 4^2 + 2^2 + 1^2. \end{align}</math>
 
  
 
 
 
 
28번째 줄: 27번째 줄:
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">자코비의 네 제곱수 정리</h5>
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">자코비의 네 제곱수 정리</h5>
  
 +
*  라그랑지의 정리가 단지 가능하다는 결과라면, 자코비의 정리는 몇 가지의 방법으로 나타낼 수 있는지에 대한 결과<br>
 
* <math>x_1^2+x_2^2+x_3^2+x_4^2=n</math>의 정수해 <math>(x_1,x_2,x_3,x_4)</math>의 개수, 즉 자연수 <math>n</math>을 네 정수의 제곱의 합으로 쓰는 방법의 수  <math>r_4(n)</math>에 대한 정리<br><math>r_4(n)=8\sum_{m|n,4\nmid m}m</math><br>
 
* <math>x_1^2+x_2^2+x_3^2+x_4^2=n</math>의 정수해 <math>(x_1,x_2,x_3,x_4)</math>의 개수, 즉 자연수 <math>n</math>을 네 정수의 제곱의 합으로 쓰는 방법의 수  <math>r_4(n)</math>에 대한 정리<br><math>r_4(n)=8\sum_{m|n,4\nmid m}m</math><br>
 
* [[자코비의 네 제곱수 정리|자코비의 네제곱수 정리]] 항목 참조<br>
 
* [[자코비의 네 제곱수 정리|자코비의 네제곱수 정리]] 항목 참조<br>
45번째 줄: 45번째 줄:
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
  
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=four+square+theorem
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
  

2010년 1월 19일 (화) 10:15 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 모든 자연수는 네 개의 제곱수의 합으로 표현가능하다

 

 

  • \(3 &= 1^2 + 1^2 + 1^2 + 0^2\)
  • \(31 &= 5^2 + 2^2 + 1^2 + 1^2\)
  • \(310 &= 17^2 + 4^2 + 2^2 + 1^2\)

 

 

자코비의 네 제곱수 정리
  • 라그랑지의 정리가 단지 가능하다는 결과라면, 자코비의 정리는 몇 가지의 방법으로 나타낼 수 있는지에 대한 결과
  • \(x_1^2+x_2^2+x_3^2+x_4^2=n\)의 정수해 \((x_1,x_2,x_3,x_4)\)의 개수, 즉 자연수 \(n\)을 네 정수의 제곱의 합으로 쓰는 방법의 수  \(r_4(n)\)에 대한 정리
    \(r_4(n)=8\sum_{m|n,4\nmid m}m\)
  • 자코비의 네제곱수 정리 항목 참조


재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그