"루트 시스템 (root system)과 딘킨 다이어그램 (Dynkin diagram)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 루트 시스템 (root system)과 딘킨 다이어그램 (Dynkin diagram)로 바꾸었습니다.)
1번째 줄: 1번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 +
 +
* [[루트 시스템 (root system)과 딘킨 다이어그램 (Dynkin diagram)]]<br>
  
 
 
 
 
7번째 줄: 9번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
*  루트 시스템은 유한차원 유클리드 벡터공간에서 여러가지 조건들을 만족시키는 벡터들의 모임이다<br>  <br>
+
*  루트 시스템은 유한차원 유클리드 벡터공간에서 여러가지 조건들을 만족시키는 벡터들의 모임이다<br>
 
* [[리군과 리대수 (교과)|리군과 리대수]]의 분류, 격자의 분류, [[유한반사군과 콕세터군(finite reflection groups and Coxeter groups)]] 등에서 중요하게 활용<br>
 
* [[리군과 리대수 (교과)|리군과 리대수]]의 분류, 격자의 분류, [[유한반사군과 콕세터군(finite reflection groups and Coxeter groups)]] 등에서 중요하게 활용<br>
* [[1938012|딘킨 다이어그램의 분류]]<br>
+
* 딘킨 다이어그램은 루트 시스템을 표현하는 그래프이다<br>
 +
 
 +
 
  
 
 
 
 
78번째 줄: 82번째 줄:
  
 
[/pages/2696052/attachments/2088317 MSP98119772g2ig5gid8he000031i1h30a8gacdi00.gif]
 
[/pages/2696052/attachments/2088317 MSP98119772g2ig5gid8he000031i1h30a8gacdi00.gif]
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
 
 
 

2011년 12월 2일 (금) 05:13 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

 

정의
  • E를 내적이 주어진 유클리드 벡터공간이라 하자.
  • 다음 조건을 만족시키는 E의 유한인 부분집합 \(\Phi\)를 루트 시스템이라 한다.
    •  \(\Phi\)는 E를 스팬(span)하며 \(0 \not \in \Phi\)
    • \(\alpha \in \Phi\), \(\lambda \alpha \in \Phi \iff \lambda=\pm 1\)
    • \(\alpha,\beta \in \Phi\)이면   \(\sigma_\alpha(\beta) =\beta-2\frac{(\beta,\alpha)}{(\alpha,\alpha)}\alpha \in \Phi\)
    • \(\langle \beta, \alpha \rangle = 2 \frac{(\beta,\alpha)}{(\alpha,\alpha)} \in \mathbb{Z}\)
  • 마지막 조건을 crystallographic조건이라 한다
  • a subgroup of \(GL(V)\) is crystallographic if it stabilizes a lattice L in V
  • e.g. the Weyl group of a Lie algebra stabilizes the root lattice or the weight lattice

 

 

딘킨 다이어그램 (Dynkin diagram)
  • first draw the simple roots as nodes
  • draw \(4(e_i, e_j)^2\)lines for two roots \(e_i, e_j\)
    \(\frac{\pi}{2}\) , \(\frac{\pi}{3}\), \(\frac{\pi}{4}\), \(\frac{\pi}{6}\)
    0,1,2,3 lines
  • how to classify all connected admissible diagrams
    • subdiagram is also admissible
    • there are at most (n-1) pairs of nodes
    • no node has more than 3 lines
    • study double lines and triple nodes

 

 

 

2차원 루트 시스템의 분류
  • \(A_1\times A_1\), \(A_2\), \(B_2\), \(G_2\)

A1 x A1

http://www.wolframalpha.com/input/?i=r%3D1%2Bcos+(4theta)

A2

http://www.wolframalpha.com/input/?i=r%3D1%2B+cos+(6theta)

B2

http://www.wolframalpha.com/input/?i=r%3D1-+(sqrt2+%2B1)^2+cos+(4theta)

G2

http://www.wolframalpha.com/input/?i=r%3D1-(sqrt+3+%2B1)^2cos+(6theta)/2

 

http://en.wikipedia.org/wiki/Root_system

[/pages/2696052/attachments/2088323 MSP45719773453e5409bcd000043c1iebh17cda58g.gif]

[/pages/2696052/attachments/2088321 MSP402197733f5dbe80g5d000056hb767e4digb412.gif]

[/pages/2696052/attachments/2088319 MSP132719772cfcfe659i75000064ieda8fh9d30h5e.gif]

[/pages/2696052/attachments/2088317 MSP98119772g2ig5gid8he000031i1h30a8gacdi00.gif]

 

 

역사

 

 

 

메모
  • reflection groups
  • lie algebras
  • Lie groups
  • algebraic groups
  • surfaces singularities
  • quiver
  • Platonic Solids

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그