"모듈라 형식(modular forms)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
  
 
* [[모듈라 형식(modular forms)]]
 
* [[모듈라 형식(modular forms)]]
20번째 줄: 20번째 줄:
  
 
* weight 2k 인 모듈라 형식
 
* weight 2k 인 모듈라 형식
* [[모듈라 군(modular group)]]의 원소에 대하여 다음 조건을 만족시킴<br><math>f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{2k} f(\tau)</math><br><math>f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{2k} f(\tau)</math><math>f \left( \frac{ a\tau +b}{ c\tau + d} \right) = f(\tau)</math><br>
+
* [[모듈라 군(modular group)]]의 원소에 대하여 다음 조건을 만족시킴<br><math>f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{2k} f(\tau)</math><br>  <br>
  
 
 
 
 
60번째 줄: 60번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">메모</h5>
 
<h5 style="margin: 0px; line-height: 2em;">메모</h5>
  
<math>d(\frac{az+b}{cz+d})=\frac{(acz+ad-acz-bc)}{(cz+d)^2}dz=(cz+d)^{-2}+dz</math>
+
<math>d(\frac{az+b}{cz+d})=\frac{(acz+ad-acz-bc)}{(cz+d)^2}dz=(cz+d)^{-2}dz</math>
  
 
 
 
 
97번째 줄: 97번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
108번째 줄: 108번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
115번째 줄: 115번째 줄:
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
+
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
  
122번째 줄: 122번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
131번째 줄: 131번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
  
 
*  도서내검색<br>
 
*  도서내검색<br>
145번째 줄: 145번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
156번째 줄: 156번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>

2011년 1월 1일 (토) 08:11 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 푸앵카레 상반평면에서 정의된 해석함수
  • 모듈라 성질과 cusp에서의 푸리에전개를 가짐
  • 별다른 언급이 없을 경우 \(q=e^{2\pi i\tau}\) 를 의미함

 

 

모듈라 성질
  • weight 2k 인 모듈라 형식
  • 모듈라 군(modular group)의 원소에 대하여 다음 조건을 만족시킴
    \(f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{2k} f(\tau)\)
     

 

 

푸리에 전개
  • cusp에서도 해석함수의 성질을 갖도록 해주기 위한 조건
    \(f(\tau) = \sum_{n=0}^\infty a_n e^{2i\pi n\tau}\)

 

 

중요한 예

\(\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots\)

 

 

구조 정리

(정리)

\(\mathbb{C}[E_4,E_6]=\oplus M_k\)

\(\{E_6^2, \Delta\}\)는 weight 12인 모듈라 형식의 기저가 된다.

 

 

메모

\(d(\frac{az+b}{cz+d})=\frac{(acz+ad-acz-bc)}{(cz+d)^2}dz=(cz+d)^{-2}dz\)

 

 

 

하위페이지

 

 

 

역사

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그