"모듈라 형식(modular forms)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query= * 도서검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/mainSearch.d)
잔글 (찾아 바꾸기 – “* [http://math.dongascience.com/ 수학동아] * [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS] * [http://betterexplained.com/ BetterExplained]” 문자열을 “” 문자열로)
148번째 줄: 148번째 줄:
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
* [http://math.dongascience.com/ 수학동아]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://betterexplained.com/ BetterExplained]
 

2012년 11월 2일 (금) 07:22 판

이 항목의 스프링노트 원문주소

 

 

개요

  • 푸앵카레 상반평면에서 정의된 해석함수
  • 모듈라 성질과 cusp에서의 푸리에전개를 가짐
  • 별다른 언급이 없을 경우 \(q=e^{2\pi i\tau}\) 를 의미함

 

 

모듈라 성질

  • weight 2k 인 모듈라 형식
  • 모듈라 군(modular group)의 원소에 대하여 다음 조건을 만족시킴
    \(f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{2k} f(\tau)\)
     

 

 

푸리에 전개

  • cusp에서도 해석함수의 성질을 갖도록 해주기 위한 조건
    \(f(\tau) = \sum_{n=0}^\infty a_n e^{2i\pi n\tau}\)

 

 

중요한 예

\(\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots\)

 

 

구조 정리

(정리)

\(\mathbb{C}[E_4,E_6]=\oplus M_k\)

\(\{E_6^2, \Delta\}\)는 weight 12인 모듈라 형식의 기저가 된다.

 

 

메모

\(d(\frac{az+b}{cz+d})=\frac{(acz+ad-acz-bc)}{(cz+d)^2}dz=(cz+d)^{-2}dz\)

 

 

 

하위페이지

 

 

 

역사

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 


 

 


 

 

블로그