"미디의 정리(Midy's theorem)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
19번째 줄: 19번째 줄:
  
 
(증명)
 
(증명)
 
<math>g_0=1</math>, <math>10g_{k-1}=p a_k+g_k</math>, <math>0\leq g_k \leq p-1</math> 로 정의되는 수열을 생각하자. 
 
  
 
1/p 을 생각하자.
 
1/p 을 생각하자.
  
<math>a_1a_2\cdots a_{n} + a_{n+1}a_{n+2}\cdots a_{2n}=\frac{g_0 10^n}{p} + \frac{g_{n} 10^n}{p}</math>,
+
<math>g_0=1</math>, <math>10g_{k-1}=p a_k+g_k</math>, <math>0\leq g_k \leq p-1</math> 로 정의되는 수열을 생각하자. 
  
 
+
<math>a_1a_2\cdots a_{n} + a_{n+1}a_{n+2}\cdots a_{2n}=\frac{g_0 10^n-g_n}{p} + \frac{g_{n} 10^n-g_0}{p}=</math>
  
 
 
 
 

2011년 12월 4일 (일) 12:11 판

이 항목의 수학노트 원문주소

 

 

개요
  • 소수 p에 대하여, 분수 a/p  (\(1\leq a \leq p-1\)) 를 십진법 전개할 때 얻어지는 순환마디의 길이가 2n 이고, 순환마디가 \(a_1a_2\cdots a_{n} a_{n+1}a_{n+2}\cdots a_{2n}\) 라 하자.
    \(1\leq i \leq n\) 에 대하여, \(a_{i} + a_{i+n}=9\) 이 성립한다.
    또한 \(a_1a_2\cdots a_{n} + a_{n+1}a_{n+2}\cdots a_{2n} = 99\cdots 99\)(n개의 9) 가 성립한다.
  • 소수 p에 대하여, 분수 1/p 를 십진법 전개할 때 얻어지는 순환마디의 길이가 3n 이고, 순환마디가 \(a_1a_2\cdots a_{n} a_{n+1}a_{n+2}\cdots a_{2n}a_{2n+1}a_{2n+2}\cdots a_{3n}\) 라 하자.
    \(a_1a_2\cdots a_{n} + a_{n+1}a_{n+2}\cdots a_{2n} +a_{2n+1}a_{2n+2}\cdots a_{3n}= 99\cdots 99\) 가 성립한다

 

 

 

(증명)

1/p 을 생각하자.

\(g_0=1\), \(10g_{k-1}=p a_k+g_k\), \(0\leq g_k \leq p-1\) 로 정의되는 수열을 생각하자. 

\(a_1a_2\cdots a_{n} + a_{n+1}a_{n+2}\cdots a_{2n}=\frac{g_0 10^n-g_n}{p} + \frac{g_{n} 10^n-g_0}{p}=\)

 

 

 

예: 142857
  • p=7
  • 1/p = 0.142857142857...
  • 1+8=4+5=2+7=9
  • 142 + 857=999
  • 14+28+57=99

 

 

 

예 : 1176470588235294
  • p=17
  • 2/17 = 0.11764705882352941176470588235294...
  • 11764705 + 88235294 = 99999999

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문과 에세이

 

 

관련논문

 

 

관련도서

 

 

링크