"2차원 회전 변환과 SO(2)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
6번째 줄: | 6번째 줄: | ||
<h5>개요</h5> | <h5>개요</h5> | ||
+ | |||
+ | * 평면에서 원점을 중심으로 각도 <math>\theta </math> 만큼의 회전변환은 다음 행렬로 표현된다<br><math>\begin{pmatrix}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}</math><br> | ||
+ | * <math>\theta_1</math>과 <math>\theta_2</math> 만큼 회전시키는 두 회전변환을 합성하면, <math>\theta_1+\theta_2</math> 만큼 회전시키는 또다른 회전변환을 하나 얻게 되는데, 이로부터 덧셈공식을 얻을 수 있다<br><math>\begin{pmatrix}\cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{pmatrix} \begin{pmatrix}\cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{pmatrix}=\begin{pmatrix}\cos (\theta_{1}+\theta_{2}) & -\sin (\theta_{1}+\theta_{2}) \\ \sin (\theta_{1}+\theta_{2}) & \cos (\theta_{1}+\theta_{2}) \end{pmatrix}</math><br> | ||
+ | * 2차원 회전변환들의 집합은 군의 구조를 갖는다<br> | ||
+ | * 단위원과 평면의 회전변환 군은 군론의 입장에서 같다 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>길이의 보존</h5> | ||
+ | |||
+ | * | ||
+ | |||
+ | |||
35번째 줄: | 50번째 줄: | ||
* [[삼각함수에는 왜 공식이 많은가?]] | * [[삼각함수에는 왜 공식이 많은가?]] | ||
− | + | * [[한글과 기하학적 변환]] | |
− | |||
2012년 1월 15일 (일) 06:43 판
이 항목의 수학노트 원문주소
개요
- 평면에서 원점을 중심으로 각도 \(\theta \) 만큼의 회전변환은 다음 행렬로 표현된다
\(\begin{pmatrix}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}\) - \(\theta_1\)과 \(\theta_2\) 만큼 회전시키는 두 회전변환을 합성하면, \(\theta_1+\theta_2\) 만큼 회전시키는 또다른 회전변환을 하나 얻게 되는데, 이로부터 덧셈공식을 얻을 수 있다
\(\begin{pmatrix}\cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{pmatrix} \begin{pmatrix}\cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{pmatrix}=\begin{pmatrix}\cos (\theta_{1}+\theta_{2}) & -\sin (\theta_{1}+\theta_{2}) \\ \sin (\theta_{1}+\theta_{2}) & \cos (\theta_{1}+\theta_{2}) \end{pmatrix}\) - 2차원 회전변환들의 집합은 군의 구조를 갖는다
- 단위원과 평면의 회전변환 군은 군론의 입장에서 같다
길이의 보존
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문