"벡터의 내적"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
8번째 줄: 8번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">제2코사인 법칙으로부터의 유도</h5>
+
<h5 style="margin: 0px; line-height: 2em;">코사인 법칙으로부터의 유도</h5>
  
 
*  삼각형의 두 변의 길이와 그 끼인 각에 대하여, 나머지 한변의 길이를 다음과 같이 표현할 수 있음<br><math>c^2 = a^2 + b^2 - 2ab\cos\theta</math><br>
 
*  삼각형의 두 변의 길이와 그 끼인 각에 대하여, 나머지 한변의 길이를 다음과 같이 표현할 수 있음<br><math>c^2 = a^2 + b^2 - 2ab\cos\theta</math><br>
*  내적의 정의의 유도<br>
+
 
 +
(증명)
  
 
<math>a= |\mathbf a| </math>, <math>b=|\mathbf b| </math>, <math>c=|\mathbf a - \mathbf b| </math> 로 두자.
 
<math>a= |\mathbf a| </math>, <math>b=|\mathbf b| </math>, <math>c=|\mathbf a - \mathbf b| </math> 로 두자.
  
<math>c=|\mathbf a - \mathbf b| </math>
+
<math>c^2-a^2-b^2=|\mathbf a - \mathbf b| ^2-|\mathbf a|^2 -|\mathbf b|^2 =(\mathbf a - \mathbf b)\cdot(\mathbf a - \mathbf b)-(\mathbf a \cdot \mathbf a)-(\mathbf b \cdot \mathbf b)=-2\mathbf a \cdot \mathbf b</math>
  
 
+
코사인법칙으로부터  <math>\mathbf a \cdot \mathbf b = ab\cos\theta= |\mathbf a| \cdot |\mathbf b| \cos \theta</math> 를 얻는다.
  
 
 
 
 
24번째 줄: 25번째 줄:
  
 
 
 
 
 
<math>\mathbf a \cdot \mathbf b = |\mathbf a| \cdot |\mathbf b| \cos \theta</math>
 
 
<math>\mathbf a \cdot \mathbf b = |\mathbf a| \cdot |\mathbf b| \cos \theta</math>
 
  
 
 
 
 

2009년 10월 5일 (월) 18:27 판

간단한 소개
  • 두 n차원 벡터 \(\mathbf a = (a_1, a_2, \cdots , a_n)\)과 \(\mathbf b = (b_1, b_2, \cdots , b_n)\) 에 대하여, 내적은 다음과 같이 정의된다
    \(\mathbf{a}\cdot \mathbf{b} = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{i=1}^n a_ib_i\)
  • 내적에 관한 다음 공식을 통해, 두 벡터간의 각도 \(\theta\)를 쉽게 계산할 수 있음
    \(\mathbf a \cdot \mathbf b = |\mathbf a| \cdot |\mathbf b| \cos \theta\)

 

 

코사인 법칙으로부터의 유도
  • 삼각형의 두 변의 길이와 그 끼인 각에 대하여, 나머지 한변의 길이를 다음과 같이 표현할 수 있음
    \(c^2 = a^2 + b^2 - 2ab\cos\theta\)

(증명)

\(a= |\mathbf a| \), \(b=|\mathbf b| \), \(c=|\mathbf a - \mathbf b| \) 로 두자.

\(c^2-a^2-b^2=|\mathbf a - \mathbf b| ^2-|\mathbf a|^2 -|\mathbf b|^2 =(\mathbf a - \mathbf b)\cdot(\mathbf a - \mathbf b)-(\mathbf a \cdot \mathbf a)-(\mathbf b \cdot \mathbf b)=-2\mathbf a \cdot \mathbf b\)

코사인법칙으로부터  \(\mathbf a \cdot \mathbf b = ab\cos\theta= |\mathbf a| \cdot |\mathbf b| \cos \theta\) 를 얻는다.

 

 

 

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들

 

수학용어번역

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그