"복소 이차 수체의 데데킨트 제타함수 special values"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
이 항목의 수학노트 원문주소==
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소== |
* [[복소이차수체의 데데킨트 제테함수]] | * [[복소이차수체의 데데킨트 제테함수]] | ||
7번째 줄: | 7번째 줄: | ||
− | ==개요 | + | ==개요== |
15번째 줄: | 15번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;"><math>s=1</math> 에서의 값 | + | <h5 style="margin: 0px; line-height: 2em;"><math>s=1</math> 에서의 값== |
* [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]]<br> | * [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]]<br> | ||
24번째 줄: | 24번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;"><math>s=2</math> 에서의 값 | + | <h5 style="margin: 0px; line-height: 2em;"><math>s=2</math> 에서의 값== |
* 복소이차수체의 경우<br><math>\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})</math><br><math>\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))</math><br> 여기서 <math>D(z)</math>는 [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)]]<br> | * 복소이차수체의 경우<br><math>\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})</math><br><math>\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))</math><br> 여기서 <math>D(z)</math>는 [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)]]<br> | ||
39번째 줄: | 39번째 줄: | ||
− | <h5 style="line-height: 2em; margin: 0px;">figure eight knot complement | + | <h5 style="line-height: 2em; margin: 0px;">figure eight knot complement== |
<math>V=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots</math> | <math>V=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots</math> | ||
54번째 줄: | 54번째 줄: | ||
− | ==역사 | + | ==역사== |
65번째 줄: | 65번째 줄: | ||
− | ==메모 | + | ==메모== |
* <math>s=1</math> 에서의 <math>L_{d_K}'(1)</math>의 값<br><math>L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})</math><br> | * <math>s=1</math> 에서의 <math>L_{d_K}'(1)</math>의 값<br><math>L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})</math><br> | ||
76번째 줄: | 76번째 줄: | ||
− | ==관련된 항목들 | + | ==관련된 항목들== |
82번째 줄: | 82번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역== |
* 단어사전<br> | * 단어사전<br> | ||
98번째 줄: | 98번째 줄: | ||
− | ==매스매티카 파일 및 계산 리소스 | + | ==매스매티카 파일 및 계산 리소스== |
* | * | ||
113번째 줄: | 113번째 줄: | ||
− | ==사전 형태의 자료 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
125번째 줄: | 125번째 줄: | ||
− | ==리뷰논문, 에세이, 강의노트 | + | ==리뷰논문, 에세이, 강의노트== |
133번째 줄: | 133번째 줄: | ||
− | ==관련논문 | + | ==관련논문== |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
143번째 줄: | 143번째 줄: | ||
− | ==관련도서 | + | ==관련도서== |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 11월 1일 (목) 12:50 판
이 항목의 수학노트 원문주소==
개요
\(s=1\) 에서의 값==
- 이차 수체에 대한 디리클레 class number 공식
- 복소이차수체의 경우
\(K=\mathbb{Q}(\sqrt{-q})\), \(q \geq 7\) , \(q \equiv 3 \pmod{4}\) 인 경우
\(d_K=-q\)
\(\chi(a)=\left(\frac{a}{q}\right)\)
\(\chi(-1)=-1\), \(\tau(\chi)=i\sqrt{q}\)
\(L(1,\chi)= \frac{- \pi\sqrt{q}}{q^2}\sum_{a=1}^{q-1}\left(\frac{a}{q}\right) a=\frac{\pi h_K}{\sqrt{q}}\)
\(h_K=-\sum_{a=1}^{q-1}\left(\frac{a}{q}\right)\frac{a}{q}\)
\(K=\mathbb{Q}(\sqrt{-q})\) , \(q \geq 5\) , \(q \equiv 1 \pmod{4}\) 인 경우
\(d_K=-4q\)
\(\chi(-1)=-1\), \(\tau(\chi)=2i\sqrt{q}\)
\(L(1,\chi)= -\frac{ \pi\sqrt{q}}{8q^2}{\sum_{(a,4q)=1}\chi(a) a=\frac{\pi h_K}{2\sqrt{q}}\)
\(h_K=-\frac{1}{4}\sum_{(a,4q)=1}\left(\frac{a}{q}\right)\frac{a}{q}\)
\(s=2\) 에서의 값==
- 복소이차수체의 경우
\(\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})\)
\(\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))\)
여기서 \(D(z)\)는 블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)
- 예
\(\zeta_{\mathbb{Q}\sqrt{-1}}(2)=1.50670301\)
\(\zeta_{\mathbb{Q}\sqrt{-2}}(2)=1.75141751\cdots\)
\(\zeta_{\mathbb{Q}\sqrt{-3}}(2)=\frac{\pi^2}{6\sqrt{3}}(D(e^{2\pi i/3})-D(e^{4\pi i/3}))=\frac{\pi^2}{3\sqrt{3}}D(e^{2\pi i/3})=1.285190955484149\cdots\)
\(\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=1.89484145\)
\(\zeta_{\mathbb{Q}\sqrt{-11}}(2)=1.49613186\)
figure eight knot complement==
\(V=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\)
\(\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=\frac{\pi^2}{3\sqrt{3}}D(e^{\frac{2\pi i}{3}})\)
\(L_{-3}(2)=\frac{2}{\sqrt{3}}D(e^{\frac{2\pi i}{3}})\)
- 2.02988321281930725
\(V(4_{1})=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\)
- 매듭이론 (knot theory)
역사
메모
- \(s=1\) 에서의 \(L_{d_K}'(1)\)의 값
\(L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})\)
- L-함수의 미분 항목 참조
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역==
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
-
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문
관련도서
- 이차 수체에 대한 디리클레 class number 공식
- 복소이차수체의 경우
\(K=\mathbb{Q}(\sqrt{-q})\), \(q \geq 7\) , \(q \equiv 3 \pmod{4}\) 인 경우
\(d_K=-q\)
\(\chi(a)=\left(\frac{a}{q}\right)\)
\(\chi(-1)=-1\), \(\tau(\chi)=i\sqrt{q}\)
\(L(1,\chi)= \frac{- \pi\sqrt{q}}{q^2}\sum_{a=1}^{q-1}\left(\frac{a}{q}\right) a=\frac{\pi h_K}{\sqrt{q}}\)
\(h_K=-\sum_{a=1}^{q-1}\left(\frac{a}{q}\right)\frac{a}{q}\)
\(K=\mathbb{Q}(\sqrt{-q})\) , \(q \geq 5\) , \(q \equiv 1 \pmod{4}\) 인 경우
\(d_K=-4q\)
\(\chi(-1)=-1\), \(\tau(\chi)=2i\sqrt{q}\)
\(L(1,\chi)= -\frac{ \pi\sqrt{q}}{8q^2}{\sum_{(a,4q)=1}\chi(a) a=\frac{\pi h_K}{2\sqrt{q}}\)
\(h_K=-\frac{1}{4}\sum_{(a,4q)=1}\left(\frac{a}{q}\right)\frac{a}{q}\)
\(s=2\) 에서의 값==
- 복소이차수체의 경우
\(\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})\)
\(\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))\)
여기서 \(D(z)\)는 블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)
- 예
\(\zeta_{\mathbb{Q}\sqrt{-1}}(2)=1.50670301\)
\(\zeta_{\mathbb{Q}\sqrt{-2}}(2)=1.75141751\cdots\)
\(\zeta_{\mathbb{Q}\sqrt{-3}}(2)=\frac{\pi^2}{6\sqrt{3}}(D(e^{2\pi i/3})-D(e^{4\pi i/3}))=\frac{\pi^2}{3\sqrt{3}}D(e^{2\pi i/3})=1.285190955484149\cdots\)
\(\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=1.89484145\)
\(\zeta_{\mathbb{Q}\sqrt{-11}}(2)=1.49613186\)
\(\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})\)
\(\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))\)
여기서 \(D(z)\)는 블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)
\(\zeta_{\mathbb{Q}\sqrt{-1}}(2)=1.50670301\)
\(\zeta_{\mathbb{Q}\sqrt{-2}}(2)=1.75141751\cdots\)
\(\zeta_{\mathbb{Q}\sqrt{-3}}(2)=\frac{\pi^2}{6\sqrt{3}}(D(e^{2\pi i/3})-D(e^{4\pi i/3}))=\frac{\pi^2}{3\sqrt{3}}D(e^{2\pi i/3})=1.285190955484149\cdots\)
\(\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=1.89484145\)
\(\zeta_{\mathbb{Q}\sqrt{-11}}(2)=1.49613186\)
figure eight knot complement==
\(V=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\)
\(\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=\frac{\pi^2}{3\sqrt{3}}D(e^{\frac{2\pi i}{3}})\)
\(L_{-3}(2)=\frac{2}{\sqrt{3}}D(e^{\frac{2\pi i}{3}})\)
- 2.02988321281930725
\(V(4_{1})=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\)
- 매듭이론 (knot theory)
\(V(4_{1})=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\)
역사
메모
- \(s=1\) 에서의 \(L_{d_K}'(1)\)의 값
\(L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})\) - L-함수의 미분 항목 참조
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들