"블라쉬케 곱 (Blaschke product)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | + | <h5>이 항목의 수학노트 원문주소</h5> | |
− | < | + | |
+ | |||
+ | <h5>개요</h5> | ||
− | <math>| | + | * 다음과 같은 꼴의 뫼비우스 변환들은 단위원을 단위원으로 보내는 전단사 해석함수이다<br><math>B(a,z)=\frac{|a|}{a}\frac{z-a}{1-\bar{a}z}</math><br> |
+ | * Blaschke product는 이러한 꼴의 함수들의 유한 또는 무한곱으로 쓰여짐.<br><math>B(z)=\prod_n B(a_n,z)</math><br> <br> | ||
− | + | ||
+ | |||
+ | <h5>타원과 3차의 Blaschke product</h5> | ||
− | < | + | <math>B(z)=z\frac{z-a}{1-\bar{a}z}\frac{z-b}{1-\bar{b}z}</math> |
+ | |||
+ | <math>|w-a|+|w-b|=|1-\bar{a}b|</math> | ||
+ | |||
+ | |||
34번째 줄: | 43번째 줄: | ||
<h5>메모</h5> | <h5>메모</h5> | ||
− | + | * http://www.jstor.org/stable/10.2307/3072367 | |
− | |||
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= | ||
2012년 8월 5일 (일) 03:10 판
이 항목의 수학노트 원문주소
개요
- 다음과 같은 꼴의 뫼비우스 변환들은 단위원을 단위원으로 보내는 전단사 해석함수이다
\(B(a,z)=\frac{|a|}{a}\frac{z-a}{1-\bar{a}z}\) - Blaschke product는 이러한 꼴의 함수들의 유한 또는 무한곱으로 쓰여짐.
\(B(z)=\prod_n B(a_n,z)\)
타원과 3차의 Blaschke product
\(B(z)=z\frac{z-a}{1-\bar{a}z}\frac{z-b}{1-\bar{b}z}\)
\(|w-a|+|w-b|=|1-\bar{a}b|\)
역사
메모
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Blaschke_product
- Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문