"블라쉬케 곱 (Blaschke product)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5>이 항목의 수학노트 원문주소</h5>
+
==개요==
 
 
* [[블라쉬케 곱(Blaschke product)]]
 
 
 
 
 
 
 
 
 
 
 
<h5>개요</h5>
 
  
 
*  다음과 같은 꼴의 뫼비우스 변환들은 단위원을 단위원으로 보내는 전단사 해석함수이다<br><math>B(a,z)=\frac{|a|}{a}\frac{z-a}{1-\bar{a}z}</math><br>
 
*  다음과 같은 꼴의 뫼비우스 변환들은 단위원을 단위원으로 보내는 전단사 해석함수이다<br><math>B(a,z)=\frac{|a|}{a}\frac{z-a}{1-\bar{a}z}</math><br>
13번째 줄: 5번째 줄:
 
* 단위원에서 정의된 함수로 주어진 점에서 zero 를 갖는 해석함수를 만들기 위해 사용됨
 
* 단위원에서 정의된 함수로 주어진 점에서 zero 를 갖는 해석함수를 만들기 위해 사용됨
  
 
+
  
 
+
  
 
+
  
<h5>타원과 3차 블라쉬케 곱</h5>
+
==타원과 3차 블라쉬케 곱==
  
 
*  다음과 같은 3차의 블라쉬케 곱을 생각하자<br><math>B(z)=z\frac{z-a}{1-\bar{a}z}\frac{z-b}{1-\bar{b}z}</math><br>
 
*  다음과 같은 3차의 블라쉬케 곱을 생각하자<br><math>B(z)=z\frac{z-a}{1-\bar{a}z}\frac{z-b}{1-\bar{b}z}</math><br>
*  단위원 위의 점 <math>\lambda</math> 에 대하여, <math>B(z)=\lambda</math> 의 세 해를 <math>z_1,z_2,z_3</math> 로 두면, 세 직선 <math>\overline{z_1z_2},\overline{z_2 z_3},\overline{z_1 z_3}</math> 은 다음 타원에 접한다<br><math>|w-a|+|w-b|=|1-\bar{a}b|</math><br>
+
*  단위원 위의 점 <math>\lambda</math> 에 대하여, <math>B(z)=\lambda</math> 의 세 해를 <math>z_ 1,z_ 2,z_ 3</math> 로 두면, 세 직선 <math>\overline{z_ 1z_ 2},\overline{z_ 2 z_ 3},\overline{z_ 1 z_ 3}</math> 은 다음 타원에 접한다<br><math>|w-a|+|w-b|=|1-\bar{a}b|</math><br>
* <math>a=0.5,b=-0.4+0.4 i</math> 로 두고, 다양한 <math>\lambda</math> 에 대하여 위의 결과를 적용하여 얻은 그림<br>[http://lh4.googleusercontent.com/KKcgYk8XytzbQSV7eKjkIqpk2StR-FJZ5tCb31Z7YbQy-8yia8ebZ1XQrH8hd7JT-CQBzSDsP9A ][http://lh4.googleusercontent.com/KKcgYk8XytzbQSV7eKjkIqpk2StR-FJZ5tCb31Z7YbQy-8yia8ebZ1XQrH8hd7JT-CQBzSDsP9A ]<br>
+
* <math>a=0.5,b=-0.4+0.4 i</math> 로 두고, 다양한 <math>\lambda</math> 에 대하여 위의 결과를 적용하여 얻은 그림<br>
 +
[[파일:블라쉬케 곱(Blaschke product)1.gif]]
 
* '''[DPR2002]''' 참조
 
* '''[DPR2002]''' 참조
  
 
+
  
 
+
  
 
+
  
<h5>역사</h5>
+
==역사==
  
 
+
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
  
 
+
  
 
+
  
<h5>메모</h5>
+
==메모==
  
 
* [http://www.jstor.org/stable/10.2307/3072367 ]http://www.jstor.org/stable/10.2307/3072367
 
* [http://www.jstor.org/stable/10.2307/3072367 ]http://www.jstor.org/stable/10.2307/3072367
49번째 줄: 42번째 줄:
 
* Math Overflow http://mathoverflow.net/search?q=
 
* Math Overflow http://mathoverflow.net/search?q=
  
 
+
  
 
+
  
<h5>관련된 항목들</h5>
+
==관련된 항목들==
  
 
+
  
 
+
  
<h5>수학용어번역</h5>
+
==수학용어번역==
  
 
*  단어사전<br>
 
*  단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
** http://ko.wiktionary.org/wiki/
* 발음사전 http://www.forvo.com/search/
+
* 발음사전 http://www.forvo.com/search/
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
+
  
 
+
  
<h5>매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스==
  
*  
+
*
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* http://functions.wolfram.com/
87번째 줄: 74번째 줄:
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
  
 
+
  
 
+
  
<h5>사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
99번째 줄: 86번째 줄:
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
  
 
+
  
 
+
  
<h5>리뷰논문, 에세이, 강의노트</h5>
+
==리뷰논문, 에세이, 강의노트==
  
 
+
  
 
+
  
 
+
  
<h5>관련논문</h5>
+
==관련논문==
  
* '''[DPR2002]'''Daepp, Ulrich, Pamela Gorkin, and Raymond Mortini. 2002. “Ellipses and Finite Blaschke Products.<em>The American Mathematical Monthly</em> 109 (9) (November 1): 785–795. doi:[http://dx.doi.org/10.2307/3072367 10.2307/3072367].
+
* '''[DPR2002]'''Daepp, Ulrich, Pamela Gorkin, and Raymond Mortini. 2002. \[OpenCurlyDoubleQuote]Ellipses and Finite Blaschke Products.\[CloseCurlyDoubleQuote] <em>The American Mathematical Monthly</em> 109 (9) (November 1): 785\[Dash]795. doi:[http://dx.doi.org/10.2307/3072367 10.2307/3072367].
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
119번째 줄: 106번째 줄:
 
* http://dx.doi.org/10.2307/3072367
 
* http://dx.doi.org/10.2307/3072367
  
 
+
  
 
+
  
<h5>관련도서</h5>
+
==관련도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=

2012년 10월 18일 (목) 12:40 판

개요

  • 다음과 같은 꼴의 뫼비우스 변환들은 단위원을 단위원으로 보내는 전단사 해석함수이다
    \(B(a,z)=\frac{|a|}{a}\frac{z-a}{1-\bar{a}z}\)
  • Blaschke product는 이러한 꼴의 함수들의 유한 또는 무한곱으로 쓰여짐.
    \(B(z)=\prod_n B(a_n,z)\)
  • 단위원에서 정의된 함수로 주어진 점에서 zero 를 갖는 해석함수를 만들기 위해 사용됨




타원과 3차 블라쉬케 곱

  • 다음과 같은 3차의 블라쉬케 곱을 생각하자
    \(B(z)=z\frac{z-a}{1-\bar{a}z}\frac{z-b}{1-\bar{b}z}\)
  • 단위원 위의 점 \(\lambda\) 에 대하여, \(B(z)=\lambda\) 의 세 해를 \(z_ 1,z_ 2,z_ 3\) 로 두면, 세 직선 \(\overline{z_ 1z_ 2},\overline{z_ 2 z_ 3},\overline{z_ 1 z_ 3}\) 은 다음 타원에 접한다
    \(|w-a|+|w-b|=|1-\bar{a}b|\)
  • \(a=0.5,b=-0.4+0.4 i\) 로 두고, 다양한 \(\lambda\) 에 대하여 위의 결과를 적용하여 얻은 그림

블라쉬케 곱(Blaschke product)1.gif

  • [DPR2002] 참조




역사



메모



관련된 항목들

수학용어번역



매스매티카 파일 및 계산 리소스



사전 형태의 자료



리뷰논문, 에세이, 강의노트

관련논문

  • [DPR2002]Daepp, Ulrich, Pamela Gorkin, and Raymond Mortini. 2002. \[OpenCurlyDoubleQuote]Ellipses and Finite Blaschke Products.\[CloseCurlyDoubleQuote] The American Mathematical Monthly 109 (9) (November 1): 785\[Dash]795. doi:10.2307/3072367.



관련도서