"삼각함수의 역사"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
17번째 줄: 17번째 줄:
 
 
 
 
  
<h5>삼각함수 표의 역사</h5>
+
==삼각함수 표의 역사</h5>
  
 
* [http://www.wolframalpha.com/input/?i=sin%28pi/180%29+in+base+60 http://www.wolframalpha.com/input/?i=sin(pi/180)+in+base+60]
 
* [http://www.wolframalpha.com/input/?i=sin%28pi/180%29+in+base+60 http://www.wolframalpha.com/input/?i=sin(pi/180)+in+base+60]
28번째 줄: 28번째 줄:
 
 
 
 
  
<h5>표만들기 기술</h5>
+
==표만들기 기술</h5>
  
 
* [http://en.wikipedia.org/wiki/Exact_trigonometric_constants ]http://en.wikipedia.org/wiki/Exact_trigonometric_constants
 
* [http://en.wikipedia.org/wiki/Exact_trigonometric_constants ]http://en.wikipedia.org/wiki/Exact_trigonometric_constants
37번째 줄: 37번째 줄:
 
 
 
 
  
<h5>톨레미 '알마게스트'</h5>
+
==톨레미 '알마게스트'</h5>
  
 
 
 
 
45번째 줄: 45번째 줄:
 
 
 
 
  
<h5>인도의 삼각함수</h5>
+
==인도의 삼각함수</h5>
  
 
* http://en.wikipedia.org/wiki/Aryabhata%27s_sine_table
 
* http://en.wikipedia.org/wiki/Aryabhata%27s_sine_table
55번째 줄: 55번째 줄:
 
 
 
 
  
<h5>이슬람에서의 발전</h5>
+
==이슬람에서의 발전</h5>
  
 
* [http://www.springerlink.com/content/cvj58f7r80yl166f/ Al-Khwārizmī's Sine Tables and a Western Table with the Hindu Norm of R = 150]
 
* [http://www.springerlink.com/content/cvj58f7r80yl166f/ Al-Khwārizmī's Sine Tables and a Western Table with the Hindu Norm of R = 150]
70번째 줄: 70번째 줄:
 
 
 
 
  
<h5>동아시아의 삼각함수</h5>
+
==동아시아의 삼각함수</h5>
  
 
* [[한국의 수학]][http://www.wolframalpha.com/input/?i=sin+%28pi*%2825%2B42/60%2B51/3600%29/180%29 http://www.wolframalpha.com/input/?i=sin+(pi*(25%2B42/60%2B51/3600)/180)]
 
* [[한국의 수학]][http://www.wolframalpha.com/input/?i=sin+%28pi*%2825%2B42/60%2B51/3600%29/180%29 http://www.wolframalpha.com/input/?i=sin+(pi*(25%2B42/60%2B51/3600)/180)]
78번째 줄: 78번째 줄:
 
 
 
 
  
<h5>유럽의 삼각함수</h5>
+
==유럽의 삼각함수</h5>
  
 
*  레기오몬타누스<br>
 
*  레기오몬타누스<br>
93번째 줄: 93번째 줄:
 
 
 
 
  
<h5>푸리에</h5>
+
==푸리에</h5>
  
 
* 1807
 
* 1807
99번째 줄: 99번째 줄:
 
 
 
 
  
<h5>연표</h5>
+
==연표</h5>
  
 
* 1464년 레기오몬타누스 De Triangulis Omnimodis (Concerning Triangles of Every Kind) 작업 시작, 1533년 출판됨
 
* 1464년 레기오몬타누스 De Triangulis Omnimodis (Concerning Triangles of Every Kind) 작업 시작, 1533년 출판됨
120번째 줄: 120번째 줄:
 
 
 
 
  
<h5>메모</h5>
+
==메모</h5>
  
 
* [http://oskicat.berkeley.edu/search%7ES1?/dTrigonometry+--+Tables./dtrigonometry+tables/-3%2C-1%2C0%2CB/exact&FF=dtrigonometry+tables&1%2C135%2C http://oskicat.berkeley.edu/search~S1?/dTrigonometry+--+Tables./dtrigonometry+tables/-3%2C-1%2C0%2CB/exact&FF=dtrigonometry+tables&1%2C135%2C]
 
* [http://oskicat.berkeley.edu/search%7ES1?/dTrigonometry+--+Tables./dtrigonometry+tables/-3%2C-1%2C0%2CB/exact&FF=dtrigonometry+tables&1%2C135%2C http://oskicat.berkeley.edu/search~S1?/dTrigonometry+--+Tables./dtrigonometry+tables/-3%2C-1%2C0%2CB/exact&FF=dtrigonometry+tables&1%2C135%2C]
151번째 줄: 151번째 줄:
 
 
 
 
  
<h5>관련된 항목들</h5>
+
==관련된 항목들</h5>
  
 
* [[뉴딜과 mathematical tables project |뉴딜과 mathematical tables project]]
 
* [[뉴딜과 mathematical tables project |뉴딜과 mathematical tables project]]
172번째 줄: 172번째 줄:
 
 
 
 
  
<h5>사전 형태의 자료</h5>
+
==사전 형태의 자료</h5>
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
188번째 줄: 188번째 줄:
 
 
 
 
  
<h5>관련논문</h5>
+
==관련논문</h5>
  
 
*  MOUSSA, ALI. 2010. The Trigonometric Functions, as They Were in the Arabic-Islamic Civilization. Arabic Sciences and Philosophy 20, no. 01: 93-104. doi:[http://dx.doi.org/10.1017/S0957423909990099 10.1017/S0957423909990099]. <br>  <br>  <br>
 
*  MOUSSA, ALI. 2010. The Trigonometric Functions, as They Were in the Arabic-Islamic Civilization. Arabic Sciences and Philosophy 20, no. 01: 93-104. doi:[http://dx.doi.org/10.1017/S0957423909990099 10.1017/S0957423909990099]. <br>  <br>  <br>
206번째 줄: 206번째 줄:
 
 
 
 
  
<h5>관련도서</h5>
+
==관련도서</h5>
  
 
* Glen Van Brummelen, The Mathematics of the Heavens and the Earth: The Early History of Trigonometry (Princeton University Press, 2009).
 
* Glen Van Brummelen, The Mathematics of the Heavens and the Earth: The Early History of Trigonometry (Princeton University Press, 2009).

2012년 10월 31일 (수) 18:57 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

==삼각함수 표의 역사

 

 

==표만들기 기술

 

 

==톨레미 '알마게스트'

 

 

 

==인도의 삼각함수

 

 

==이슬람에서의 발전

 

 

==동아시아의 삼각함수

 

 

==유럽의 삼각함수

  • 레티쿠스
  • 피티스쿠스

 

 

==푸리에

  • 1807

 

==연표

 

 

==메모

Ptolemy was well aware of the new possibilities, because finding the distance between two stars was equivalent to measuring an arc of a circle, and he adapted the spherical geometry for use with tables of chords. http://nrich.maths.org/6853&part=

Of course, many of the astronomical calculations Ptolemy needed to perform concerned the angular distances between celestial bodies or, in other words, the positions of bodies on a spherical surface, for which spherical trigonometry is appropriate. Here, too, Ptolemy could use his table of chords.

While many new aspects of trigonometry were being discovered, the chord, sine, versine and cosine were developed in the investigation of astronomical problems, and conceived of as properties of angles at the centre of the heavenly sphere. In contrast, tangent and cotangent properties were derived from the measurement of shadows of a gnomon and the problems of telling the time. http://nrich.maths.org/6908&part=

 

 

The sine formula for spherical triangleswas used to good effect by the famous Islamic scholar al-B¯ır¯un¯ı with his solution to the qibla problem, this being to
determine the direction in which Mecca was closest from a given location on the Earth, i.e. along a great circle

 

 

시간과 주기운동 http://en.wikipedia.org/wiki/Atomic_clock

http://en.wikipedia.org/wiki/Spring_%28device%29

시계종류 : sundial, water, divisional time, pendulum, quartz, atomic clock http://www.youtube.com/watch?v=4T8uyD0AvzI

 

 

==관련된 항목들

 

 

수학용어번역

 

 

==사전 형태의 자료

 

 

==관련논문

 

 

==관련도서

  • Glen Van Brummelen, The Mathematics of the Heavens and the Earth: The Early History of Trigonometry (Princeton University Press, 2009).