"수식 표현 안내"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
82번째 줄: 82번째 줄:
 
==LaTeX 명령예==
 
==LaTeX 명령예==
  
 +
'''연립방정식'''
 +
$$ \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right. $$
 +
 +
 +
==예==
 
* <math>\mathcal{H}om</math>
 
* <math>\mathcal{H}om</math>
 
* <math>G\"odel</math>
 
* <math>G\"odel</math>

2012년 10월 22일 (월) 13:11 판

HTML 수식표현[1]




웹상에서의 LaTeX을 통한 수식표현


LaTeX 명령어 입문


모르는 명령어 그림으로 알아내기



LaTeX으로 노트하기








하위페이지


LaTeX 명령예

연립방정식 $$ \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right. $$


\(\chi(t)=\left(\frac{t}{p}\right)\)


\(\operatorname{Re} a > 0 \)


  • \(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
  1. x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
  • \(e^{i \pi} +1 = 0\)
  1. e^{i\pi}+1=0
  • \(2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}\)
  1. 2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}
  • \(\frac{\sqrt{3}}{5}\)
  1. \frac{\sqrt{3}}{5}
  • \(720\div12=60\)
  1. 720\div12=60
  • \(\large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\)
  1. \large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
  • \(\Large A\ =\ \large\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ \hdash 1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)\)
  1. \Large A\ =\ \large\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ \hdash 1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)
  • \(\LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.\)
  1. \LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.
  1. \Large\left.\begin{eqnarray} x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}
  • \(\int e^{-\frac{x^2}{2}} dx\)
  1. \int%20e^{-\frac{x^2}{2}}%20dx

\(e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n\)

  1. e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n
  • \(\Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}\)
  1. \Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}
  • \(\Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}\)
  1. \Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
  1. \sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}
  1. \int_{a}^{b}f(x)dx=F(b)-F(a)
  1. \exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}