"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 +
* http://en.wikipedia.org/wiki/Timeline_of_mathematics 참조
 +
 +
 
 +
 
=== 17세기 ===
 
=== 17세기 ===
  
 
* [http://en.wikipedia.org/wiki/17th_century 1600s] - Putumana Somayaji writes the "Paddhati", which presents a detailed discussion of various trigonometric series
 
* [http://en.wikipedia.org/wiki/17th_century 1600s] - Putumana Somayaji writes the "Paddhati", which presents a detailed discussion of various trigonometric series
* [http://en.wikipedia.org/wiki/1614 1614] - [http://en.wikipedia.org/wiki/John_Napier John Napier] discusses Napierian [http://en.wikipedia.org/wiki/Logarithm logarithms] in <em style="">Mirifici Logarithmorum Canonis Descriptio</em>,
+
* [http://en.wikipedia.org/wiki/1614 1614] - [http://en.wikipedia.org/wiki/John_Napier John Napier] discusses Napierian [http://en.wikipedia.org/wiki/Logarithm logarithms] in <em>Mirifici Logarithmorum Canonis Descriptio</em>,
* [http://en.wikipedia.org/wiki/1617 1617] - [http://en.wikipedia.org/wiki/Henry_Briggs_%28mathematician%29 Henry Briggs] discusses decimal logarithms in <em style="">Logarithmorum Chilias Prima</em>,
+
* [http://en.wikipedia.org/wiki/1617 1617] - [http://en.wikipedia.org/wiki/Henry_Briggs_%28mathematician%29 Henry Briggs] discusses decimal logarithms in <em>Logarithmorum Chilias Prima</em>,
 
* [http://en.wikipedia.org/wiki/1618 1618] - [http://en.wikipedia.org/wiki/John_Napier John Napier] publishes the first references to [http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e] in a work on [http://en.wikipedia.org/wiki/Logarithms logarithms].
 
* [http://en.wikipedia.org/wiki/1618 1618] - [http://en.wikipedia.org/wiki/John_Napier John Napier] publishes the first references to [http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e] in a work on [http://en.wikipedia.org/wiki/Logarithms logarithms].
 
* [http://en.wikipedia.org/wiki/1619 1619] - [http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes René Descartes] discovers [http://en.wikipedia.org/wiki/Analytic_geometry analytic geometry] ([http://en.wikipedia.org/wiki/Pierre_de_Fermat Pierre de Fermat] claimed that he also discovered it independently),
 
* [http://en.wikipedia.org/wiki/1619 1619] - [http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes René Descartes] discovers [http://en.wikipedia.org/wiki/Analytic_geometry analytic geometry] ([http://en.wikipedia.org/wiki/Pierre_de_Fermat Pierre de Fermat] claimed that he also discovered it independently),
9번째 줄: 13번째 줄:
 
* [http://en.wikipedia.org/wiki/1629 1629] - Pierre de Fermat develops a rudimentary [http://en.wikipedia.org/wiki/Differential_calculus differential calculus],
 
* [http://en.wikipedia.org/wiki/1629 1629] - Pierre de Fermat develops a rudimentary [http://en.wikipedia.org/wiki/Differential_calculus differential calculus],
 
* [http://en.wikipedia.org/wiki/1634 1634] - [http://en.wikipedia.org/wiki/Gilles_de_Roberval Gilles de Roberval] shows that the area under a [http://en.wikipedia.org/wiki/Cycloid cycloid] is three times the area of its generating circle,
 
* [http://en.wikipedia.org/wiki/1634 1634] - [http://en.wikipedia.org/wiki/Gilles_de_Roberval Gilles de Roberval] shows that the area under a [http://en.wikipedia.org/wiki/Cycloid cycloid] is three times the area of its generating circle,
* [http://en.wikipedia.org/wiki/1636 1636] - [http://en.wikipedia.org/wiki/Muhammad_Baqir_Yazdi Muhammad Baqir Yazdi] jointly discovered the pair of [http://en.wikipedia.org/wiki/Amicable_number amicable numbers] 9,363,584 and 9,437,056 along with [http://en.wikipedia.org/wiki/Descartes Descartes] (1636).<sup id="cite_ref-5" style="">[http://en.wikipedia.org/wiki/Timeline_of_mathematics#cite_note-5 [6]]</sup>
+
* [http://en.wikipedia.org/wiki/1636 1636] - [http://en.wikipedia.org/wiki/Muhammad_Baqir_Yazdi Muhammad Baqir Yazdi] jointly discovered the pair of [http://en.wikipedia.org/wiki/Amicable_number amicable numbers] 9,363,584 and 9,437,056 along with [http://en.wikipedia.org/wiki/Descartes Descartes] (1636).<sup id="cite_ref-5">[http://en.wikipedia.org/wiki/Timeline_of_mathematics#cite_note-5 [6]]</sup>
* [http://en.wikipedia.org/wiki/1637 1637] - Pierre de Fermat claims to have proven [http://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem Fermat's Last Theorem] in his copy of [http://en.wikipedia.org/wiki/Diophantus Diophantus]' <em style="">Arithmetica</em>,
+
* [http://en.wikipedia.org/wiki/1637 1637] - Pierre de Fermat claims to have proven [http://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem Fermat's Last Theorem] in his copy of [http://en.wikipedia.org/wiki/Diophantus Diophantus]' <em>Arithmetica</em>,
 
* [http://en.wikipedia.org/wiki/1637 1637] - First use of the term [http://en.wikipedia.org/wiki/Imaginary_number imaginary number] by [http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes René Descartes]; it was meant to be derogatory.
 
* [http://en.wikipedia.org/wiki/1637 1637] - First use of the term [http://en.wikipedia.org/wiki/Imaginary_number imaginary number] by [http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes René Descartes]; it was meant to be derogatory.
 
* [http://en.wikipedia.org/wiki/1654 1654] - [http://en.wikipedia.org/wiki/Blaise_Pascal Blaise Pascal] and Pierre de Fermat create the theory of [http://en.wikipedia.org/wiki/Probability probability],
 
* [http://en.wikipedia.org/wiki/1654 1654] - [http://en.wikipedia.org/wiki/Blaise_Pascal Blaise Pascal] and Pierre de Fermat create the theory of [http://en.wikipedia.org/wiki/Probability probability],
* [http://en.wikipedia.org/wiki/1655 1655] - [http://en.wikipedia.org/wiki/John_Wallis John Wallis] writes <em style="">Arithmetica Infinitorum</em>,
+
* [http://en.wikipedia.org/wiki/1655 1655] - [http://en.wikipedia.org/wiki/John_Wallis John Wallis] writes <em>Arithmetica Infinitorum</em>,
 
* [http://en.wikipedia.org/wiki/1658 1658] - [http://en.wikipedia.org/wiki/Christopher_Wren Christopher Wren] shows that the length of a [http://en.wikipedia.org/wiki/Cycloid cycloid] is four times the diameter of its generating circle,
 
* [http://en.wikipedia.org/wiki/1658 1658] - [http://en.wikipedia.org/wiki/Christopher_Wren Christopher Wren] shows that the length of a [http://en.wikipedia.org/wiki/Cycloid cycloid] is four times the diameter of its generating circle,
 
* [http://en.wikipedia.org/wiki/1665 1665] - [http://en.wikipedia.org/wiki/Isaac_Newton Isaac Newton] works on the [http://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus fundamental theorem of calculus] and develops his version of [http://en.wikipedia.org/wiki/Infinitesimal_calculus infinitesimal calculus],
 
* [http://en.wikipedia.org/wiki/1665 1665] - [http://en.wikipedia.org/wiki/Isaac_Newton Isaac Newton] works on the [http://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus fundamental theorem of calculus] and develops his version of [http://en.wikipedia.org/wiki/Infinitesimal_calculus infinitesimal calculus],
33번째 줄: 37번째 줄:
 
* [http://en.wikipedia.org/wiki/1712 1712] - [http://en.wikipedia.org/wiki/Brook_Taylor Brook Taylor] develops [http://en.wikipedia.org/wiki/Taylor_series Taylor series],
 
* [http://en.wikipedia.org/wiki/1712 1712] - [http://en.wikipedia.org/wiki/Brook_Taylor Brook Taylor] develops [http://en.wikipedia.org/wiki/Taylor_series Taylor series],
 
* [http://en.wikipedia.org/wiki/1722 1722] - [http://en.wikipedia.org/wiki/Abraham_de_Moivre Abraham de Moivre] states [http://en.wikipedia.org/wiki/De_Moivre%27s_formula de Moivre's formula] connecting [http://en.wikipedia.org/wiki/Trigonometric_function trigonometric functions] and [http://en.wikipedia.org/wiki/Complex_number complex numbers],
 
* [http://en.wikipedia.org/wiki/1722 1722] - [http://en.wikipedia.org/wiki/Abraham_de_Moivre Abraham de Moivre] states [http://en.wikipedia.org/wiki/De_Moivre%27s_formula de Moivre's formula] connecting [http://en.wikipedia.org/wiki/Trigonometric_function trigonometric functions] and [http://en.wikipedia.org/wiki/Complex_number complex numbers],
* [http://en.wikipedia.org/wiki/1724 1724] - Abraham De Moivre studies mortality statistics and the foundation of the theory of annuities in <em style="">Annuities on Lives</em>,
+
* [http://en.wikipedia.org/wiki/1724 1724] - Abraham De Moivre studies mortality statistics and the foundation of the theory of annuities in <em>Annuities on Lives</em>,
* [http://en.wikipedia.org/wiki/1730 1730] - [http://en.wikipedia.org/wiki/James_Stirling_%28mathematician%29 James Stirling] publishes <em style="">The Differential Method</em>,
+
* [http://en.wikipedia.org/wiki/1730 1730] - [http://en.wikipedia.org/wiki/James_Stirling_%28mathematician%29 James Stirling] publishes <em>The Differential Method</em>,
 
* [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Giovanni_Gerolamo_Saccheri Giovanni Gerolamo Saccheri] studies what geometry would be like if [http://en.wikipedia.org/wiki/Parallel_postulate Euclid's fifth postulate] were false,
 
* [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Giovanni_Gerolamo_Saccheri Giovanni Gerolamo Saccheri] studies what geometry would be like if [http://en.wikipedia.org/wiki/Parallel_postulate Euclid's fifth postulate] were false,
 
* [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Abraham_de_Moivre Abraham de Moivre] introduces the [http://en.wikipedia.org/wiki/Normal_distribution normal distribution] to approximate the [http://en.wikipedia.org/wiki/Binomial_distribution binomial distribution] in probability,
 
* [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Abraham_de_Moivre Abraham de Moivre] introduces the [http://en.wikipedia.org/wiki/Normal_distribution normal distribution] to approximate the [http://en.wikipedia.org/wiki/Binomial_distribution binomial distribution] in probability,
42번째 줄: 46번째 줄:
 
* [http://en.wikipedia.org/wiki/1739 1739] - Leonhard Euler solves the general [http://en.wikipedia.org/w/index.php?title=Homogeneous_linear_ordinary_differential_equation&action=edit&redlink=1 homogeneous linear ordinary differential equation] with [http://en.wikipedia.org/wiki/Constant_coefficients constant coefficients],
 
* [http://en.wikipedia.org/wiki/1739 1739] - Leonhard Euler solves the general [http://en.wikipedia.org/w/index.php?title=Homogeneous_linear_ordinary_differential_equation&action=edit&redlink=1 homogeneous linear ordinary differential equation] with [http://en.wikipedia.org/wiki/Constant_coefficients constant coefficients],
 
* [http://en.wikipedia.org/wiki/1742 1742] - [http://en.wikipedia.org/wiki/Christian_Goldbach Christian Goldbach] conjectures that every even number greater than two can be expressed as the sum of two primes, now known as [http://en.wikipedia.org/wiki/Goldbach%27s_conjecture Goldbach's conjecture],
 
* [http://en.wikipedia.org/wiki/1742 1742] - [http://en.wikipedia.org/wiki/Christian_Goldbach Christian Goldbach] conjectures that every even number greater than two can be expressed as the sum of two primes, now known as [http://en.wikipedia.org/wiki/Goldbach%27s_conjecture Goldbach's conjecture],
* [http://en.wikipedia.org/wiki/1748 1748] - [http://en.wikipedia.org/wiki/Maria_Gaetana_Agnesi Maria Gaetana Agnesi] discusses analysis in <em style="">Instituzioni Analitiche ad Uso della Gioventu Italiana</em>,
+
* [http://en.wikipedia.org/wiki/1748 1748] - [http://en.wikipedia.org/wiki/Maria_Gaetana_Agnesi Maria Gaetana Agnesi] discusses analysis in <em>Instituzioni Analitiche ad Uso della Gioventu Italiana</em>,
 
* [http://en.wikipedia.org/wiki/1761 1761] - [http://en.wikipedia.org/wiki/Thomas_Bayes Thomas Bayes] proves [http://en.wikipedia.org/wiki/Bayes%27_theorem Bayes' theorem],
 
* [http://en.wikipedia.org/wiki/1761 1761] - [http://en.wikipedia.org/wiki/Thomas_Bayes Thomas Bayes] proves [http://en.wikipedia.org/wiki/Bayes%27_theorem Bayes' theorem],
 
* [http://en.wikipedia.org/wiki/1762 1762] - [http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange Joseph Louis Lagrange] discovers the [http://en.wikipedia.org/wiki/Divergence_theorem divergence theorem],
 
* [http://en.wikipedia.org/wiki/1762 1762] - [http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange Joseph Louis Lagrange] discovers the [http://en.wikipedia.org/wiki/Divergence_theorem divergence theorem],
 
* [http://en.wikipedia.org/wiki/1789 1789] - [http://en.wikipedia.org/wiki/Jurij_Vega Jurij Vega] improves Machin's formula and computes π to 140 decimal places,
 
* [http://en.wikipedia.org/wiki/1789 1789] - [http://en.wikipedia.org/wiki/Jurij_Vega Jurij Vega] improves Machin's formula and computes π to 140 decimal places,
* [http://en.wikipedia.org/wiki/1794 1794] - Jurij Vega publishes <em style="">Thesaurus Logarithmorum Completus</em>,
+
* [http://en.wikipedia.org/wiki/1794 1794] - Jurij Vega publishes <em>Thesaurus Logarithmorum Completus</em>,
 
* [http://en.wikipedia.org/wiki/1796 1796] - [http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss Carl Friedrich Gauss] proves that the [http://en.wikipedia.org/wiki/Heptadecagon regular 17-gon] can be constructed using only a [http://en.wikipedia.org/wiki/Compass_and_straightedge compass and straightedge]
 
* [http://en.wikipedia.org/wiki/1796 1796] - [http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss Carl Friedrich Gauss] proves that the [http://en.wikipedia.org/wiki/Heptadecagon regular 17-gon] can be constructed using only a [http://en.wikipedia.org/wiki/Compass_and_straightedge compass and straightedge]
 
* [http://en.wikipedia.org/wiki/1796 1796] - [http://en.wikipedia.org/wiki/Adrien-Marie_Legendre Adrien-Marie Legendre] conjectures the [http://en.wikipedia.org/wiki/Prime_number_theorem prime number theorem],
 
* [http://en.wikipedia.org/wiki/1796 1796] - [http://en.wikipedia.org/wiki/Adrien-Marie_Legendre Adrien-Marie Legendre] conjectures the [http://en.wikipedia.org/wiki/Prime_number_theorem prime number theorem],
57번째 줄: 61번째 줄:
 
=== 19세기 ===
 
=== 19세기 ===
  
* [http://en.wikipedia.org/wiki/1801 1801] - <em style="">[http://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae Disquisitiones Arithmeticae]</em>, Carl Friedrich Gauss's [http://en.wikipedia.org/wiki/Number_theory number theory] treatise, is published in Latin
+
* [http://en.wikipedia.org/wiki/1801 1801] - <em>[http://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae Disquisitiones Arithmeticae]</em>, Carl Friedrich Gauss's [http://en.wikipedia.org/wiki/Number_theory number theory] treatise, is published in Latin
 
* [http://en.wikipedia.org/wiki/1805 1805] - Adrien-Marie Legendre introduces the [http://en.wikipedia.org/wiki/Method_of_least_squares method of least squares] for fitting a curve to a given set of observations,
 
* [http://en.wikipedia.org/wiki/1805 1805] - Adrien-Marie Legendre introduces the [http://en.wikipedia.org/wiki/Method_of_least_squares method of least squares] for fitting a curve to a given set of observations,
 
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Louis_Poinsot Louis Poinsot] discovers the two remaining [http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra Kepler-Poinsot polyhedra].
 
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Louis_Poinsot Louis Poinsot] discovers the two remaining [http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra Kepler-Poinsot polyhedra].
68번째 줄: 72번째 줄:
 
* [http://en.wikipedia.org/wiki/1824 1824] - [http://en.wikipedia.org/wiki/Niels_Henrik_Abel Niels Henrik Abel] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that the general [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula involving only arithmetical operations and roots,
 
* [http://en.wikipedia.org/wiki/1824 1824] - [http://en.wikipedia.org/wiki/Niels_Henrik_Abel Niels Henrik Abel] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that the general [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula involving only arithmetical operations and roots,
 
* [http://en.wikipedia.org/wiki/1825 1825] - Augustin-Louis Cauchy presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis],
 
* [http://en.wikipedia.org/wiki/1825 1825] - Augustin-Louis Cauchy presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis],
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet Johann Peter Gustav Lejeune Dirichlet] and Adrien-Marie Legendre prove Fermat's Last Theorem for <em style="">n</em> = 5,
+
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet Johann Peter Gustav Lejeune Dirichlet] and Adrien-Marie Legendre prove Fermat's Last Theorem for <em>n</em> = 5,
 
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] discovers [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem],
 
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] discovers [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem],
 
* [http://en.wikipedia.org/wiki/1828 1828] - George Green proves [http://en.wikipedia.org/wiki/Green%27s_theorem Green's theorem],
 
* [http://en.wikipedia.org/wiki/1828 1828] - George Green proves [http://en.wikipedia.org/wiki/Green%27s_theorem Green's theorem],
74번째 줄: 78번째 줄:
 
* [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green,
 
* [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green,
 
* [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory],
 
* [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory],
* [http://en.wikipedia.org/wiki/1832 1832] - Peter Dirichlet proves Fermat's Last Theorem for <em style="">n</em> = 14,
+
* [http://en.wikipedia.org/wiki/1832 1832] - Peter Dirichlet proves Fermat's Last Theorem for <em>n</em> = 14,
 
* [http://en.wikipedia.org/wiki/1835 1835] - Peter Dirichlet proves [http://en.wikipedia.org/wiki/Dirichlet%27s_theorem Dirichlet's theorem] about prime numbers in arithmetical progressions,
 
* [http://en.wikipedia.org/wiki/1835 1835] - Peter Dirichlet proves [http://en.wikipedia.org/wiki/Dirichlet%27s_theorem Dirichlet's theorem] about prime numbers in arithmetical progressions,
 
* [http://en.wikipedia.org/wiki/1837 1837] - [http://en.wikipedia.org/w/index.php?title=Pierre_Wantsel&action=edit&redlink=1 Pierre Wantsel] proves that doubling the cube and [http://en.wikipedia.org/wiki/Trisecting_the_angle trisecting the angle] are impossible with only a compass and straightedge, as well as the full completion of the problem of constructability of regular polygons
 
* [http://en.wikipedia.org/wiki/1837 1837] - [http://en.wikipedia.org/w/index.php?title=Pierre_Wantsel&action=edit&redlink=1 Pierre Wantsel] proves that doubling the cube and [http://en.wikipedia.org/wiki/Trisecting_the_angle trisecting the angle] are impossible with only a compass and straightedge, as well as the full completion of the problem of constructability of regular polygons
80번째 줄: 84번째 줄:
 
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem,
 
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem,
 
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/wiki/William_Rowan_Hamilton William Hamilton] discovers the calculus of [http://en.wikipedia.org/wiki/Quaternion quaternions] and deduces that they are non-commutative,
 
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/wiki/William_Rowan_Hamilton William Hamilton] discovers the calculus of [http://en.wikipedia.org/wiki/Quaternion quaternions] and deduces that they are non-commutative,
* [http://en.wikipedia.org/wiki/1847 1847] - [http://en.wikipedia.org/wiki/George_Boole George Boole] formalizes [http://en.wikipedia.org/wiki/Symbolic_logic symbolic logic] in <em style="">The Mathematical Analysis of Logic</em>, defining what is now called [http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29 Boolean algebra],
+
* [http://en.wikipedia.org/wiki/1847 1847] - [http://en.wikipedia.org/wiki/George_Boole George Boole] formalizes [http://en.wikipedia.org/wiki/Symbolic_logic symbolic logic] in <em>The Mathematical Analysis of Logic</em>, defining what is now called [http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29 Boolean algebra],
 
* [http://en.wikipedia.org/wiki/1849 1849] - [http://en.wikipedia.org/wiki/George_Gabriel_Stokes George Gabriel Stokes] shows that [http://en.wikipedia.org/wiki/Soliton solitary waves] can arise from a combination of periodic waves,
 
* [http://en.wikipedia.org/wiki/1849 1849] - [http://en.wikipedia.org/wiki/George_Gabriel_Stokes George Gabriel Stokes] shows that [http://en.wikipedia.org/wiki/Soliton solitary waves] can arise from a combination of periodic waves,
 
* [http://en.wikipedia.org/wiki/1850 1850] - [http://en.wikipedia.org/wiki/Victor_Alexandre_Puiseux Victor Alexandre Puiseux] distinguishes between poles and branch points and introduces the concept of [http://en.wikipedia.org/wiki/Mathematical_singularity essential singular points],
 
* [http://en.wikipedia.org/wiki/1850 1850] - [http://en.wikipedia.org/wiki/Victor_Alexandre_Puiseux Victor Alexandre Puiseux] distinguishes between poles and branch points and introduces the concept of [http://en.wikipedia.org/wiki/Mathematical_singularity essential singular points],
93번째 줄: 97번째 줄:
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
 
* [http://en.wikipedia.org/wiki/1878 1878] - Charles Hermite solves the general quintic equation by means of elliptic and modular functions
 
* [http://en.wikipedia.org/wiki/1878 1878] - Charles Hermite solves the general quintic equation by means of elliptic and modular functions
* [http://en.wikipedia.org/wiki/1882 1882] - [http://en.wikipedia.org/wiki/Ferdinand_von_Lindemann Ferdinand von Lindemann]
+
* [http://en.wikipedia.org/wiki/1882 1882] - 린데만이 [[파이 π는 초월수이다|파이는 초월수]]임을 증명하고 따라서 원이 자와 컴파스로 작도 불가능함을 증명
* [http://en.wikipedia.org/wiki/Ferdinand_von_Lindemann ] proves that π is transcendental and that therefore the circle cannot be squared with a compass and straightedge,
+
* [http://en.wikipedia.org/wiki/1882 1882] - 펠릭스 ㅋ[http://en.wikipedia.org/wiki/Klein_bottle Klein bottle],
* [http://en.wikipedia.org/wiki/1882 1882] - Felix Klein invents the [http://en.wikipedia.org/wiki/Klein_bottle Klein bottle],
 
 
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Diederik_Korteweg Diederik Korteweg] and [http://en.wikipedia.org/wiki/Gustav_de_Vries Gustav de Vries] derive the [http://en.wikipedia.org/wiki/KdV_equation KdV equation] to describe the development of long solitary water waves in a canal of rectangular cross section,
 
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Diederik_Korteweg Diederik Korteweg] and [http://en.wikipedia.org/wiki/Gustav_de_Vries Gustav de Vries] derive the [http://en.wikipedia.org/wiki/KdV_equation KdV equation] to describe the development of long solitary water waves in a canal of rectangular cross section,
 
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] publishes a book about set theory containing the arithmetic of infinite [http://en.wikipedia.org/wiki/Cardinal_number cardinal numbers] and the [http://en.wikipedia.org/wiki/Continuum_hypothesis continuum hypothesis],
 
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] publishes a book about set theory containing the arithmetic of infinite [http://en.wikipedia.org/wiki/Cardinal_number cardinal numbers] and the [http://en.wikipedia.org/wiki/Continuum_hypothesis continuum hypothesis],
 
* [http://en.wikipedia.org/wiki/1896 1896] - [http://en.wikipedia.org/wiki/Jacques_Hadamard Jacques Hadamard] and [http://en.wikipedia.org/wiki/Charles_Jean_de_la_Vall%C3%A9e-Poussin Charles Jean de la Vallée-Poussin] independently prove the [http://en.wikipedia.org/wiki/Prime_number_theorem prime number theorem],
 
* [http://en.wikipedia.org/wiki/1896 1896] - [http://en.wikipedia.org/wiki/Jacques_Hadamard Jacques Hadamard] and [http://en.wikipedia.org/wiki/Charles_Jean_de_la_Vall%C3%A9e-Poussin Charles Jean de la Vallée-Poussin] independently prove the [http://en.wikipedia.org/wiki/Prime_number_theorem prime number theorem],
* [http://en.wikipedia.org/wiki/1896 1896] - [http://en.wikipedia.org/wiki/Hermann_Minkowski Hermann Minkowski] presents <em style="">Geometry of numbers</em>,
+
* [http://en.wikipedia.org/wiki/1896 1896] - [http://en.wikipedia.org/wiki/Hermann_Minkowski Hermann Minkowski] presents <em>Geometry of numbers</em>,
 
* 1887 - 12월 22일, 라마누잔 탄생([[라마누잔(1887- 1920)|라마누잔의 수학]])
 
* 1887 - 12월 22일, 라마누잔 탄생([[라마누잔(1887- 1920)|라마누잔의 수학]])
 
* [http://en.wikipedia.org/wiki/1899 1899] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] discovers a contradiction in his set theory,
 
* [http://en.wikipedia.org/wiki/1899 1899] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] discovers a contradiction in his set theory,
* [http://en.wikipedia.org/wiki/1899 1899] - [http://en.wikipedia.org/wiki/David_Hilbert David Hilbert] presents a set of self-consistent geometric axioms in <em style="">Foundations of Geometry</em>,
+
* [http://en.wikipedia.org/wiki/1899 1899] - [http://en.wikipedia.org/wiki/David_Hilbert David Hilbert] presents a set of self-consistent geometric axioms in <em>Foundations of Geometry</em>,
 
* [http://en.wikipedia.org/wiki/1900 1900] - David Hilbert states his [http://en.wikipedia.org/wiki/Hilbert%27s_problems list of 23 problems] which show where some further mathematical work is needed.
 
* [http://en.wikipedia.org/wiki/1900 1900] - David Hilbert states his [http://en.wikipedia.org/wiki/Hilbert%27s_problems list of 23 problems] which show where some further mathematical work is needed.
  
116번째 줄: 119번째 줄:
 
* [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Josip_Plemelj Josip Plemelj] solves the Riemann problem about the existence of a differential equation with a given [http://en.wikipedia.org/wiki/Monodromic_group monodromic group] and uses Sokhotsky - Plemelj formulae,
 
* [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Josip_Plemelj Josip Plemelj] solves the Riemann problem about the existence of a differential equation with a given [http://en.wikipedia.org/wiki/Monodromic_group monodromic group] and uses Sokhotsky - Plemelj formulae,
 
* [http://en.wikipedia.org/wiki/1912 1912] - [http://en.wikipedia.org/wiki/Luitzen_Egbertus_Jan_Brouwer Luitzen Egbertus Jan Brouwer] presents the [http://en.wikipedia.org/wiki/Brouwer_fixed-point_theorem Brouwer fixed-point theorem],
 
* [http://en.wikipedia.org/wiki/1912 1912] - [http://en.wikipedia.org/wiki/Luitzen_Egbertus_Jan_Brouwer Luitzen Egbertus Jan Brouwer] presents the [http://en.wikipedia.org/wiki/Brouwer_fixed-point_theorem Brouwer fixed-point theorem],
* [http://en.wikipedia.org/wiki/1912 1912] - Josip Plemelj publishes simplified proof for the Fermat's Last Theorem for exponent <em style="">n</em> = 5,
+
* [http://en.wikipedia.org/wiki/1912 1912] - Josip Plemelj publishes simplified proof for the Fermat's Last Theorem for exponent <em>n</em> = 5,
 
* [http://en.wikipedia.org/wiki/1913 1913] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] sends a long list of complex theorems without proofs to [http://en.wikipedia.org/wiki/G._H._Hardy G. H. Hardy],
 
* [http://en.wikipedia.org/wiki/1913 1913] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] sends a long list of complex theorems without proofs to [http://en.wikipedia.org/wiki/G._H._Hardy G. H. Hardy],
* [http://en.wikipedia.org/wiki/1914 1914] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] publishes <em style="">Modular Equations and Approximations to π</em>,
+
* [http://en.wikipedia.org/wiki/1914 1914] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] publishes <em>Modular Equations and Approximations to π</em>,
 
* [http://en.wikipedia.org/wiki/1916 1916] - [http://en.wikipedia.org/wiki/Albert_Einstein Einstein's] theory of [http://en.wikipedia.org/wiki/General_relativity general relativity].
 
* [http://en.wikipedia.org/wiki/1916 1916] - [http://en.wikipedia.org/wiki/Albert_Einstein Einstein's] theory of [http://en.wikipedia.org/wiki/General_relativity general relativity].
 
* [http://en.wikipedia.org/wiki/1910s 1910s] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] develops over 3000 theorems, including properties of [http://en.wikipedia.org/wiki/Highly_composite_number highly composite numbers], the [http://en.wikipedia.org/wiki/Partition_function_%28number_theory%29 partition function] and its [http://en.wikipedia.org/wiki/Asymptotics asymptotics], and [http://en.wikipedia.org/wiki/Ramanujan_theta_function mock theta functions]. He also makes major breakthroughs and discoveries in the areas of [http://en.wikipedia.org/wiki/Gamma_function gamma functions], [http://en.wikipedia.org/wiki/Modular_form modular forms], [http://en.wikipedia.org/wiki/Divergent_series divergent series], [http://en.wikipedia.org/wiki/Hypergeometric_series hypergeometric series] and [http://en.wikipedia.org/wiki/Prime_number_theory prime number theory]
 
* [http://en.wikipedia.org/wiki/1910s 1910s] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] develops over 3000 theorems, including properties of [http://en.wikipedia.org/wiki/Highly_composite_number highly composite numbers], the [http://en.wikipedia.org/wiki/Partition_function_%28number_theory%29 partition function] and its [http://en.wikipedia.org/wiki/Asymptotics asymptotics], and [http://en.wikipedia.org/wiki/Ramanujan_theta_function mock theta functions]. He also makes major breakthroughs and discoveries in the areas of [http://en.wikipedia.org/wiki/Gamma_function gamma functions], [http://en.wikipedia.org/wiki/Modular_form modular forms], [http://en.wikipedia.org/wiki/Divergent_series divergent series], [http://en.wikipedia.org/wiki/Hypergeometric_series hypergeometric series] and [http://en.wikipedia.org/wiki/Prime_number_theory prime number theory]
* [http://en.wikipedia.org/wiki/1919 1919] - [http://en.wikipedia.org/wiki/Viggo_Brun Viggo Brun] defines [http://en.wikipedia.org/wiki/Brun%27s_constant Brun's constant]<em style="">B</em><sub style="">2</sub> for [http://en.wikipedia.org/wiki/Twin_prime twin primes],
+
* [http://en.wikipedia.org/wiki/1919 1919] - [http://en.wikipedia.org/wiki/Viggo_Brun Viggo Brun] defines [http://en.wikipedia.org/wiki/Brun%27s_constant Brun's constant]<em>B</em><sub>2</sub> for [http://en.wikipedia.org/wiki/Twin_prime twin primes],
 
* 1920 - 4월 26일 라마누잔 사망
 
* 1920 - 4월 26일 라마누잔 사망
 
* [http://en.wikipedia.org/wiki/1928 1928] - [http://en.wikipedia.org/wiki/John_von_Neumann John von Neumann] begins devising the principles of [http://en.wikipedia.org/wiki/Game_theory game theory] and proves the [http://en.wikipedia.org/wiki/Minimax_theorem minimax theorem],
 
* [http://en.wikipedia.org/wiki/1928 1928] - [http://en.wikipedia.org/wiki/John_von_Neumann John von Neumann] begins devising the principles of [http://en.wikipedia.org/wiki/Game_theory game theory] and proves the [http://en.wikipedia.org/wiki/Minimax_theorem minimax theorem],
128번째 줄: 131번째 줄:
 
* [http://en.wikipedia.org/wiki/1931 1931] - [http://en.wikipedia.org/wiki/Georges_de_Rham Georges de Rham] develops theorems in [http://en.wikipedia.org/wiki/Cohomology cohomology] and [http://en.wikipedia.org/wiki/Characteristic_class characteristic classes],
 
* [http://en.wikipedia.org/wiki/1931 1931] - [http://en.wikipedia.org/wiki/Georges_de_Rham Georges de Rham] develops theorems in [http://en.wikipedia.org/wiki/Cohomology cohomology] and [http://en.wikipedia.org/wiki/Characteristic_class characteristic classes],
 
* [http://en.wikipedia.org/wiki/1933 1933] - [http://en.wikipedia.org/wiki/Karol_Borsuk Karol Borsuk] and [http://en.wikipedia.org/wiki/Stanislaw_Ulam Stanislaw Ulam] present the [http://en.wikipedia.org/wiki/Borsuk-Ulam_Theorem Borsuk-Ulam antipodal-point theorem],
 
* [http://en.wikipedia.org/wiki/1933 1933] - [http://en.wikipedia.org/wiki/Karol_Borsuk Karol Borsuk] and [http://en.wikipedia.org/wiki/Stanislaw_Ulam Stanislaw Ulam] present the [http://en.wikipedia.org/wiki/Borsuk-Ulam_Theorem Borsuk-Ulam antipodal-point theorem],
* [http://en.wikipedia.org/wiki/1933 1933] - [http://en.wikipedia.org/wiki/Andrey_Nikolaevich_Kolmogorov Andrey Nikolaevich Kolmogorov] publishes his book <em style="">Basic notions of the calculus of probability</em> (<em style="">Grundbegriffe der Wahrscheinlichkeitsrechnung</em>) which contains an [http://en.wikipedia.org/wiki/Probability_axiom axiomatization of probability] based on [http://en.wikipedia.org/wiki/Measure_theory measure theory],
+
* [http://en.wikipedia.org/wiki/1933 1933] - [http://en.wikipedia.org/wiki/Andrey_Nikolaevich_Kolmogorov Andrey Nikolaevich Kolmogorov] publishes his book <em>Basic notions of the calculus of probability</em> (<em>Grundbegriffe der Wahrscheinlichkeitsrechnung</em>) which contains an [http://en.wikipedia.org/wiki/Probability_axiom axiomatization of probability] based on [http://en.wikipedia.org/wiki/Measure_theory measure theory],
 
* [http://en.wikipedia.org/wiki/1940 1940] - Kurt Gödel shows that neither the [http://en.wikipedia.org/wiki/Continuum_hypothesis continuum hypothesis] nor the [http://en.wikipedia.org/wiki/Axiom_of_choice axiom of choice] can be disproven from the standard axioms of set theory,
 
* [http://en.wikipedia.org/wiki/1940 1940] - Kurt Gödel shows that neither the [http://en.wikipedia.org/wiki/Continuum_hypothesis continuum hypothesis] nor the [http://en.wikipedia.org/wiki/Axiom_of_choice axiom of choice] can be disproven from the standard axioms of set theory,
 
* [http://en.wikipedia.org/wiki/1942 1942] - [http://en.wikipedia.org/wiki/G.C._Danielson G.C. Danielson] and [http://en.wikipedia.org/wiki/Cornelius_Lanczos Cornelius Lanczos] develop a [http://en.wikipedia.org/wiki/Fast_Fourier_Transform Fast Fourier Transform] algorithm,
 
* [http://en.wikipedia.org/wiki/1942 1942] - [http://en.wikipedia.org/wiki/G.C._Danielson G.C. Danielson] and [http://en.wikipedia.org/wiki/Cornelius_Lanczos Cornelius Lanczos] develop a [http://en.wikipedia.org/wiki/Fast_Fourier_Transform Fast Fourier Transform] algorithm,
153번째 줄: 156번째 줄:
 
* [http://en.wikipedia.org/wiki/1968 1968] - [http://en.wikipedia.org/wiki/Michael_Atiyah Michael Atiyah] and [http://en.wikipedia.org/wiki/Isadore_Singer Isadore Singer] prove the [http://en.wikipedia.org/wiki/Atiyah-Singer_index_theorem Atiyah-Singer index theorem] about the index of [http://en.wikipedia.org/wiki/Elliptic_operator elliptic operators],
 
* [http://en.wikipedia.org/wiki/1968 1968] - [http://en.wikipedia.org/wiki/Michael_Atiyah Michael Atiyah] and [http://en.wikipedia.org/wiki/Isadore_Singer Isadore Singer] prove the [http://en.wikipedia.org/wiki/Atiyah-Singer_index_theorem Atiyah-Singer index theorem] about the index of [http://en.wikipedia.org/wiki/Elliptic_operator elliptic operators],
 
* [http://en.wikipedia.org/wiki/1973 1973] - [http://en.wikipedia.org/wiki/Lotfi_Zadeh Lotfi Zadeh] founded the field of [http://en.wikipedia.org/wiki/Fuzzy_logic fuzzy logic],
 
* [http://en.wikipedia.org/wiki/1973 1973] - [http://en.wikipedia.org/wiki/Lotfi_Zadeh Lotfi Zadeh] founded the field of [http://en.wikipedia.org/wiki/Fuzzy_logic fuzzy logic],
* [http://en.wikipedia.org/wiki/1975 1975] - [http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot Benoît Mandelbrot] publishes <em style="">Les objets fractals, forme, hasard et dimension</em>,
+
* [http://en.wikipedia.org/wiki/1975 1975] - [http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot Benoît Mandelbrot] publishes <em>Les objets fractals, forme, hasard et dimension</em>,
 
* [http://en.wikipedia.org/wiki/1976 1976] - [http://en.wikipedia.org/wiki/Kenneth_Appel Kenneth Appel] and [http://en.wikipedia.org/wiki/Wolfgang_Haken Wolfgang Haken] use a computer to prove the [http://en.wikipedia.org/wiki/Four_color_theorem Four color theorem],
 
* [http://en.wikipedia.org/wiki/1976 1976] - [http://en.wikipedia.org/wiki/Kenneth_Appel Kenneth Appel] and [http://en.wikipedia.org/wiki/Wolfgang_Haken Wolfgang Haken] use a computer to prove the [http://en.wikipedia.org/wiki/Four_color_theorem Four color theorem],
 
* [http://en.wikipedia.org/wiki/1983 1983] - [http://en.wikipedia.org/wiki/Gerd_Faltings Gerd Faltings] proves the [http://en.wikipedia.org/wiki/Mordell_conjecture Mordell conjecture] and thereby shows that there are only finitely many whole number solutions for each exponent of Fermat's Last Theorem,
 
* [http://en.wikipedia.org/wiki/1983 1983] - [http://en.wikipedia.org/wiki/Gerd_Faltings Gerd Faltings] proves the [http://en.wikipedia.org/wiki/Mordell_conjecture Mordell conjecture] and thereby shows that there are only finitely many whole number solutions for each exponent of Fermat's Last Theorem,

2009년 6월 27일 (토) 11:42 판

 

17세기


18세기


19세기


20세기

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상