"수학사 연표"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
6번째 줄: | 6번째 줄: | ||
* [http://en.wikipedia.org/wiki/17th_century 1600s] - Putumana Somayaji writes the "Paddhati", which presents a detailed discussion of various trigonometric series | * [http://en.wikipedia.org/wiki/17th_century 1600s] - Putumana Somayaji writes the "Paddhati", which presents a detailed discussion of various trigonometric series | ||
− | * [http://en.wikipedia.org/wiki/1614 1614] - [http://en.wikipedia.org/wiki/John_Napier John Napier] discusses Napierian [http://en.wikipedia.org/wiki/Logarithm logarithms] in <em>Mirifici Logarithmorum Canonis Descriptio</em>, | + | * [http://en.wikipedia.org/wiki/1614 1614] - [http://en.wikipedia.org/wiki/John_Napier John Napier] discusses Napierian [http://en.wikipedia.org/wiki/Logarithm logarithms] in <em style="">Mirifici Logarithmorum Canonis Descriptio</em>, |
− | * [http://en.wikipedia.org/wiki/1617 1617] - [http://en.wikipedia.org/wiki/Henry_Briggs_%28mathematician%29 Henry Briggs] discusses decimal logarithms in <em>Logarithmorum Chilias Prima</em>, | + | * [http://en.wikipedia.org/wiki/1617 1617] - [http://en.wikipedia.org/wiki/Henry_Briggs_%28mathematician%29 Henry Briggs] discusses decimal logarithms in <em style="">Logarithmorum Chilias Prima</em>, |
* [http://en.wikipedia.org/wiki/1618 1618] - [http://en.wikipedia.org/wiki/John_Napier John Napier] publishes the first references to [http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e] in a work on [http://en.wikipedia.org/wiki/Logarithms logarithms]. | * [http://en.wikipedia.org/wiki/1618 1618] - [http://en.wikipedia.org/wiki/John_Napier John Napier] publishes the first references to [http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e] in a work on [http://en.wikipedia.org/wiki/Logarithms logarithms]. | ||
* [http://en.wikipedia.org/wiki/1619 1619] - [http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes René Descartes] discovers [http://en.wikipedia.org/wiki/Analytic_geometry analytic geometry] ([http://en.wikipedia.org/wiki/Pierre_de_Fermat Pierre de Fermat] claimed that he also discovered it independently), | * [http://en.wikipedia.org/wiki/1619 1619] - [http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes René Descartes] discovers [http://en.wikipedia.org/wiki/Analytic_geometry analytic geometry] ([http://en.wikipedia.org/wiki/Pierre_de_Fermat Pierre de Fermat] claimed that he also discovered it independently), | ||
13번째 줄: | 13번째 줄: | ||
* [http://en.wikipedia.org/wiki/1629 1629] - Pierre de Fermat develops a rudimentary [http://en.wikipedia.org/wiki/Differential_calculus differential calculus], | * [http://en.wikipedia.org/wiki/1629 1629] - Pierre de Fermat develops a rudimentary [http://en.wikipedia.org/wiki/Differential_calculus differential calculus], | ||
* [http://en.wikipedia.org/wiki/1634 1634] - [http://en.wikipedia.org/wiki/Gilles_de_Roberval Gilles de Roberval] shows that the area under a [http://en.wikipedia.org/wiki/Cycloid cycloid] is three times the area of its generating circle, | * [http://en.wikipedia.org/wiki/1634 1634] - [http://en.wikipedia.org/wiki/Gilles_de_Roberval Gilles de Roberval] shows that the area under a [http://en.wikipedia.org/wiki/Cycloid cycloid] is three times the area of its generating circle, | ||
− | * [http://en.wikipedia.org/wiki/1636 1636] - [http://en.wikipedia.org/wiki/Muhammad_Baqir_Yazdi Muhammad Baqir Yazdi] jointly discovered the pair of [http://en.wikipedia.org/wiki/Amicable_number amicable numbers] 9,363,584 and 9,437,056 along with [http://en.wikipedia.org/wiki/Descartes Descartes] (1636).<sup id="cite_ref-5">[http://en.wikipedia.org/wiki/Timeline_of_mathematics#cite_note-5 [6]]</sup> | + | * [http://en.wikipedia.org/wiki/1636 1636] - [http://en.wikipedia.org/wiki/Muhammad_Baqir_Yazdi Muhammad Baqir Yazdi] jointly discovered the pair of [http://en.wikipedia.org/wiki/Amicable_number amicable numbers] 9,363,584 and 9,437,056 along with [http://en.wikipedia.org/wiki/Descartes Descartes] (1636).<sup id="cite_ref-5" style="">[http://en.wikipedia.org/wiki/Timeline_of_mathematics#cite_note-5 [6]]</sup> |
− | * [http://en.wikipedia.org/wiki/1637 1637] - Pierre de Fermat claims to have proven [http://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem Fermat's Last Theorem] in his copy of [http://en.wikipedia.org/wiki/Diophantus Diophantus]' <em>Arithmetica</em>, | + | * [http://en.wikipedia.org/wiki/1637 1637] - Pierre de Fermat claims to have proven [http://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem Fermat's Last Theorem] in his copy of [http://en.wikipedia.org/wiki/Diophantus Diophantus]' <em style="">Arithmetica</em>, |
* [http://en.wikipedia.org/wiki/1637 1637] - First use of the term [http://en.wikipedia.org/wiki/Imaginary_number imaginary number] by [http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes René Descartes]; it was meant to be derogatory. | * [http://en.wikipedia.org/wiki/1637 1637] - First use of the term [http://en.wikipedia.org/wiki/Imaginary_number imaginary number] by [http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes René Descartes]; it was meant to be derogatory. | ||
* [http://en.wikipedia.org/wiki/1654 1654] - [http://en.wikipedia.org/wiki/Blaise_Pascal Blaise Pascal] and Pierre de Fermat create the theory of [http://en.wikipedia.org/wiki/Probability probability], | * [http://en.wikipedia.org/wiki/1654 1654] - [http://en.wikipedia.org/wiki/Blaise_Pascal Blaise Pascal] and Pierre de Fermat create the theory of [http://en.wikipedia.org/wiki/Probability probability], | ||
− | * [http://en.wikipedia.org/wiki/1655 1655] - [http://en.wikipedia.org/wiki/John_Wallis John Wallis] writes <em>Arithmetica Infinitorum</em>, | + | * [http://en.wikipedia.org/wiki/1655 1655] - [http://en.wikipedia.org/wiki/John_Wallis John Wallis] writes <em style="">Arithmetica Infinitorum</em>, |
* [http://en.wikipedia.org/wiki/1658 1658] - [http://en.wikipedia.org/wiki/Christopher_Wren Christopher Wren] shows that the length of a [http://en.wikipedia.org/wiki/Cycloid cycloid] is four times the diameter of its generating circle, | * [http://en.wikipedia.org/wiki/1658 1658] - [http://en.wikipedia.org/wiki/Christopher_Wren Christopher Wren] shows that the length of a [http://en.wikipedia.org/wiki/Cycloid cycloid] is four times the diameter of its generating circle, | ||
* [http://en.wikipedia.org/wiki/1665 1665] - [http://en.wikipedia.org/wiki/Isaac_Newton Isaac Newton] works on the [http://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus fundamental theorem of calculus] and develops his version of [http://en.wikipedia.org/wiki/Infinitesimal_calculus infinitesimal calculus], | * [http://en.wikipedia.org/wiki/1665 1665] - [http://en.wikipedia.org/wiki/Isaac_Newton Isaac Newton] works on the [http://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus fundamental theorem of calculus] and develops his version of [http://en.wikipedia.org/wiki/Infinitesimal_calculus infinitesimal calculus], | ||
37번째 줄: | 37번째 줄: | ||
* [http://en.wikipedia.org/wiki/1712 1712] - [http://en.wikipedia.org/wiki/Brook_Taylor Brook Taylor] develops [http://en.wikipedia.org/wiki/Taylor_series Taylor series], | * [http://en.wikipedia.org/wiki/1712 1712] - [http://en.wikipedia.org/wiki/Brook_Taylor Brook Taylor] develops [http://en.wikipedia.org/wiki/Taylor_series Taylor series], | ||
* [http://en.wikipedia.org/wiki/1722 1722] - [http://en.wikipedia.org/wiki/Abraham_de_Moivre Abraham de Moivre] states [http://en.wikipedia.org/wiki/De_Moivre%27s_formula de Moivre's formula] connecting [http://en.wikipedia.org/wiki/Trigonometric_function trigonometric functions] and [http://en.wikipedia.org/wiki/Complex_number complex numbers], | * [http://en.wikipedia.org/wiki/1722 1722] - [http://en.wikipedia.org/wiki/Abraham_de_Moivre Abraham de Moivre] states [http://en.wikipedia.org/wiki/De_Moivre%27s_formula de Moivre's formula] connecting [http://en.wikipedia.org/wiki/Trigonometric_function trigonometric functions] and [http://en.wikipedia.org/wiki/Complex_number complex numbers], | ||
− | * [http://en.wikipedia.org/wiki/1724 1724] - Abraham De Moivre studies mortality statistics and the foundation of the theory of annuities in <em>Annuities on Lives</em>, | + | * [http://en.wikipedia.org/wiki/1724 1724] - Abraham De Moivre studies mortality statistics and the foundation of the theory of annuities in <em style="">Annuities on Lives</em>, |
− | * [http://en.wikipedia.org/wiki/1730 1730] - [http://en.wikipedia.org/wiki/James_Stirling_%28mathematician%29 James Stirling] publishes <em>The Differential Method</em>, | + | * [http://en.wikipedia.org/wiki/1730 1730] - [http://en.wikipedia.org/wiki/James_Stirling_%28mathematician%29 James Stirling] publishes <em style="">The Differential Method</em>, |
* [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Giovanni_Gerolamo_Saccheri Giovanni Gerolamo Saccheri] studies what geometry would be like if [http://en.wikipedia.org/wiki/Parallel_postulate Euclid's fifth postulate] were false, | * [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Giovanni_Gerolamo_Saccheri Giovanni Gerolamo Saccheri] studies what geometry would be like if [http://en.wikipedia.org/wiki/Parallel_postulate Euclid's fifth postulate] were false, | ||
* [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Abraham_de_Moivre Abraham de Moivre] introduces the [http://en.wikipedia.org/wiki/Normal_distribution normal distribution] to approximate the [http://en.wikipedia.org/wiki/Binomial_distribution binomial distribution] in probability, | * [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Abraham_de_Moivre Abraham de Moivre] introduces the [http://en.wikipedia.org/wiki/Normal_distribution normal distribution] to approximate the [http://en.wikipedia.org/wiki/Binomial_distribution binomial distribution] in probability, | ||
* [http://en.wikipedia.org/wiki/1734 1734] - [http://en.wikipedia.org/wiki/Leonhard_Euler Leonhard Euler] introduces the [http://en.wikipedia.org/w/index.php?title=Integrating_factor_technique&action=edit&redlink=1 integrating factor technique] for solving first-order ordinary [http://en.wikipedia.org/wiki/Differential_equation differential equations], | * [http://en.wikipedia.org/wiki/1734 1734] - [http://en.wikipedia.org/wiki/Leonhard_Euler Leonhard Euler] introduces the [http://en.wikipedia.org/w/index.php?title=Integrating_factor_technique&action=edit&redlink=1 integrating factor technique] for solving first-order ordinary [http://en.wikipedia.org/wiki/Differential_equation differential equations], | ||
− | * [http://en.wikipedia.org/wiki/1735 1735] - | + | * [http://en.wikipedia.org/wiki/1735 1735] - 오일러 바젤 문제를 해결함 [[#|오일러와 바젤문제(완전제곱수의 역수들의 합)]] |
* [http://en.wikipedia.org/wiki/1736 1736] - Leonhard Euler solves the problem of the [http://en.wikipedia.org/wiki/Seven_bridges_of_K%C3%B6nigsberg Seven bridges of Königsberg], in effect creating [http://en.wikipedia.org/wiki/Graph_theory graph theory], | * [http://en.wikipedia.org/wiki/1736 1736] - Leonhard Euler solves the problem of the [http://en.wikipedia.org/wiki/Seven_bridges_of_K%C3%B6nigsberg Seven bridges of Königsberg], in effect creating [http://en.wikipedia.org/wiki/Graph_theory graph theory], | ||
* [http://en.wikipedia.org/wiki/1739 1739] - Leonhard Euler solves the general [http://en.wikipedia.org/w/index.php?title=Homogeneous_linear_ordinary_differential_equation&action=edit&redlink=1 homogeneous linear ordinary differential equation] with [http://en.wikipedia.org/wiki/Constant_coefficients constant coefficients], | * [http://en.wikipedia.org/wiki/1739 1739] - Leonhard Euler solves the general [http://en.wikipedia.org/w/index.php?title=Homogeneous_linear_ordinary_differential_equation&action=edit&redlink=1 homogeneous linear ordinary differential equation] with [http://en.wikipedia.org/wiki/Constant_coefficients constant coefficients], | ||
* [http://en.wikipedia.org/wiki/1742 1742] - [http://en.wikipedia.org/wiki/Christian_Goldbach Christian Goldbach] conjectures that every even number greater than two can be expressed as the sum of two primes, now known as [http://en.wikipedia.org/wiki/Goldbach%27s_conjecture Goldbach's conjecture], | * [http://en.wikipedia.org/wiki/1742 1742] - [http://en.wikipedia.org/wiki/Christian_Goldbach Christian Goldbach] conjectures that every even number greater than two can be expressed as the sum of two primes, now known as [http://en.wikipedia.org/wiki/Goldbach%27s_conjecture Goldbach's conjecture], | ||
− | * [http://en.wikipedia.org/wiki/1748 1748] - [http://en.wikipedia.org/wiki/Maria_Gaetana_Agnesi Maria Gaetana Agnesi] discusses analysis in <em>Instituzioni Analitiche ad Uso della Gioventu Italiana</em>, | + | * [http://en.wikipedia.org/wiki/1748 1748] - [http://en.wikipedia.org/wiki/Maria_Gaetana_Agnesi Maria Gaetana Agnesi] discusses analysis in <em style="">Instituzioni Analitiche ad Uso della Gioventu Italiana</em>, |
* [http://en.wikipedia.org/wiki/1761 1761] - [http://en.wikipedia.org/wiki/Thomas_Bayes Thomas Bayes] proves [http://en.wikipedia.org/wiki/Bayes%27_theorem Bayes' theorem], | * [http://en.wikipedia.org/wiki/1761 1761] - [http://en.wikipedia.org/wiki/Thomas_Bayes Thomas Bayes] proves [http://en.wikipedia.org/wiki/Bayes%27_theorem Bayes' theorem], | ||
* [http://en.wikipedia.org/wiki/1762 1762] - [http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange Joseph Louis Lagrange] discovers the [http://en.wikipedia.org/wiki/Divergence_theorem divergence theorem], | * [http://en.wikipedia.org/wiki/1762 1762] - [http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange Joseph Louis Lagrange] discovers the [http://en.wikipedia.org/wiki/Divergence_theorem divergence theorem], | ||
* [http://en.wikipedia.org/wiki/1789 1789] - [http://en.wikipedia.org/wiki/Jurij_Vega Jurij Vega] improves Machin's formula and computes π to 140 decimal places, | * [http://en.wikipedia.org/wiki/1789 1789] - [http://en.wikipedia.org/wiki/Jurij_Vega Jurij Vega] improves Machin's formula and computes π to 140 decimal places, | ||
− | * [http://en.wikipedia.org/wiki/1794 1794] - Jurij Vega publishes <em>Thesaurus Logarithmorum Completus</em>, | + | * [http://en.wikipedia.org/wiki/1794 1794] - Jurij Vega publishes <em style="">Thesaurus Logarithmorum Completus</em>, |
* [http://en.wikipedia.org/wiki/1796 1796] - [http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss Carl Friedrich Gauss] proves that the [http://en.wikipedia.org/wiki/Heptadecagon regular 17-gon] can be constructed using only a [http://en.wikipedia.org/wiki/Compass_and_straightedge compass and straightedge] | * [http://en.wikipedia.org/wiki/1796 1796] - [http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss Carl Friedrich Gauss] proves that the [http://en.wikipedia.org/wiki/Heptadecagon regular 17-gon] can be constructed using only a [http://en.wikipedia.org/wiki/Compass_and_straightedge compass and straightedge] | ||
* [http://en.wikipedia.org/wiki/1796 1796] - [http://en.wikipedia.org/wiki/Adrien-Marie_Legendre Adrien-Marie Legendre] conjectures the [http://en.wikipedia.org/wiki/Prime_number_theorem prime number theorem], | * [http://en.wikipedia.org/wiki/1796 1796] - [http://en.wikipedia.org/wiki/Adrien-Marie_Legendre Adrien-Marie Legendre] conjectures the [http://en.wikipedia.org/wiki/Prime_number_theorem prime number theorem], | ||
61번째 줄: | 61번째 줄: | ||
=== 19세기 === | === 19세기 === | ||
− | * [http://en.wikipedia.org/wiki/1801 1801] - <em>[http://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae Disquisitiones Arithmeticae]</em>, Carl Friedrich Gauss's [http://en.wikipedia.org/wiki/Number_theory number theory] treatise, is published in Latin | + | * [http://en.wikipedia.org/wiki/1801 1801] - <em style="">[http://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae Disquisitiones Arithmeticae]</em>, Carl Friedrich Gauss's [http://en.wikipedia.org/wiki/Number_theory number theory] treatise, is published in Latin |
* [http://en.wikipedia.org/wiki/1805 1805] - Adrien-Marie Legendre introduces the [http://en.wikipedia.org/wiki/Method_of_least_squares method of least squares] for fitting a curve to a given set of observations, | * [http://en.wikipedia.org/wiki/1805 1805] - Adrien-Marie Legendre introduces the [http://en.wikipedia.org/wiki/Method_of_least_squares method of least squares] for fitting a curve to a given set of observations, | ||
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Louis_Poinsot Louis Poinsot] discovers the two remaining [http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra Kepler-Poinsot polyhedra]. | * [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Louis_Poinsot Louis Poinsot] discovers the two remaining [http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra Kepler-Poinsot polyhedra]. | ||
72번째 줄: | 72번째 줄: | ||
* [http://en.wikipedia.org/wiki/1824 1824] - [http://en.wikipedia.org/wiki/Niels_Henrik_Abel Niels Henrik Abel] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that the general [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula involving only arithmetical operations and roots, | * [http://en.wikipedia.org/wiki/1824 1824] - [http://en.wikipedia.org/wiki/Niels_Henrik_Abel Niels Henrik Abel] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that the general [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula involving only arithmetical operations and roots, | ||
* [http://en.wikipedia.org/wiki/1825 1825] - Augustin-Louis Cauchy presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis], | * [http://en.wikipedia.org/wiki/1825 1825] - Augustin-Louis Cauchy presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis], | ||
− | * [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet Johann Peter Gustav Lejeune Dirichlet] and Adrien-Marie Legendre prove Fermat's Last Theorem for <em>n</em> = 5, | + | * [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet Johann Peter Gustav Lejeune Dirichlet] and Adrien-Marie Legendre prove Fermat's Last Theorem for <em style="">n</em> = 5, |
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] discovers [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem], | * [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] discovers [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem], | ||
* [http://en.wikipedia.org/wiki/1828 1828] - George Green proves [http://en.wikipedia.org/wiki/Green%27s_theorem Green's theorem], | * [http://en.wikipedia.org/wiki/1828 1828] - George Green proves [http://en.wikipedia.org/wiki/Green%27s_theorem Green's theorem], | ||
− | * [http://en.wikipedia.org/wiki/1829 1829] - | + | * [http://en.wikipedia.org/wiki/1829 1829] - 볼리아이, 가우스, 로바체프스키가 [[#|쌍곡기하학]]을 발견 |
* [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green, | * [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green, | ||
* [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory], | * [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory], | ||
− | * | + | * 1832 - 디리클레가 <em style="">n</em> = 14인 경우의 [[#|페르마의 마지막 정리]]를 증명 |
− | * | + | * 1835 - 디리클레가 [[#|등차수열의 소수분포에 관한 디리클레 정리]]를 증명 |
− | * | + | * 1837 - 피에르 완첼([http://en.wikipedia.org/w/index.php?title=Pierre_Wantsel&action=edit&redlink=1 Pierre Wantsel])이 [[#|두배의 부피를 갖는 정육면체(The duplication of the cube)]]과 [[#|각의 3등분(The trisection of an angle)]] 문제가 자와 컴파스로 해결불가능임을 증명, as well as the full completion of the problem of constructability of regular polygons |
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem], | * [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem], | ||
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem, | * [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem, | ||
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/wiki/William_Rowan_Hamilton William Hamilton] discovers the calculus of [http://en.wikipedia.org/wiki/Quaternion quaternions] and deduces that they are non-commutative, | * [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/wiki/William_Rowan_Hamilton William Hamilton] discovers the calculus of [http://en.wikipedia.org/wiki/Quaternion quaternions] and deduces that they are non-commutative, | ||
− | * [http://en.wikipedia.org/wiki/1847 1847] - [http://en.wikipedia.org/wiki/George_Boole George Boole] formalizes [http://en.wikipedia.org/wiki/Symbolic_logic symbolic logic] in <em>The Mathematical Analysis of Logic</em>, defining what is now called [http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29 Boolean algebra], | + | * [http://en.wikipedia.org/wiki/1847 1847] - [http://en.wikipedia.org/wiki/George_Boole George Boole] formalizes [http://en.wikipedia.org/wiki/Symbolic_logic symbolic logic] in <em style="">The Mathematical Analysis of Logic</em>, defining what is now called [http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29 Boolean algebra], |
* [http://en.wikipedia.org/wiki/1849 1849] - [http://en.wikipedia.org/wiki/George_Gabriel_Stokes George Gabriel Stokes] shows that [http://en.wikipedia.org/wiki/Soliton solitary waves] can arise from a combination of periodic waves, | * [http://en.wikipedia.org/wiki/1849 1849] - [http://en.wikipedia.org/wiki/George_Gabriel_Stokes George Gabriel Stokes] shows that [http://en.wikipedia.org/wiki/Soliton solitary waves] can arise from a combination of periodic waves, | ||
* [http://en.wikipedia.org/wiki/1850 1850] - [http://en.wikipedia.org/wiki/Victor_Alexandre_Puiseux Victor Alexandre Puiseux] distinguishes between poles and branch points and introduces the concept of [http://en.wikipedia.org/wiki/Mathematical_singularity essential singular points], | * [http://en.wikipedia.org/wiki/1850 1850] - [http://en.wikipedia.org/wiki/Victor_Alexandre_Puiseux Victor Alexandre Puiseux] distinguishes between poles and branch points and introduces the concept of [http://en.wikipedia.org/wiki/Mathematical_singularity essential singular points], | ||
93번째 줄: | 93번째 줄: | ||
* [http://en.wikipedia.org/wiki/1859 1859] - Bernhard Riemann formulates the [http://en.wikipedia.org/wiki/Riemann_hypothesis Riemann hypothesis] which has strong implications about the distribution of [http://en.wikipedia.org/wiki/Prime_number prime numbers], | * [http://en.wikipedia.org/wiki/1859 1859] - Bernhard Riemann formulates the [http://en.wikipedia.org/wiki/Riemann_hypothesis Riemann hypothesis] which has strong implications about the distribution of [http://en.wikipedia.org/wiki/Prime_number prime numbers], | ||
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate, | * [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate, | ||
− | * [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite Charles Hermite] proves that [http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e] is transcendental, | + | * [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite Charles Hermite] proves that [http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e] is transcendental, [[#|자연상수 e는 초월수이다]] |
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius] presents his method for finding series solutions to linear differential equations with [http://en.wikipedia.org/wiki/Regular_singular_point regular singular points], | * [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius] presents his method for finding series solutions to linear differential equations with [http://en.wikipedia.org/wiki/Regular_singular_point regular singular points], | ||
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.) | * [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.) | ||
103번째 줄: | 103번째 줄: | ||
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] publishes a book about set theory containing the arithmetic of infinite [http://en.wikipedia.org/wiki/Cardinal_number cardinal numbers] and the [http://en.wikipedia.org/wiki/Continuum_hypothesis continuum hypothesis], | * [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] publishes a book about set theory containing the arithmetic of infinite [http://en.wikipedia.org/wiki/Cardinal_number cardinal numbers] and the [http://en.wikipedia.org/wiki/Continuum_hypothesis continuum hypothesis], | ||
* [http://en.wikipedia.org/wiki/1896 1896] - [http://en.wikipedia.org/wiki/Jacques_Hadamard Jacques Hadamard] and [http://en.wikipedia.org/wiki/Charles_Jean_de_la_Vall%C3%A9e-Poussin Charles Jean de la Vallée-Poussin] independently prove the [http://en.wikipedia.org/wiki/Prime_number_theorem prime number theorem], | * [http://en.wikipedia.org/wiki/1896 1896] - [http://en.wikipedia.org/wiki/Jacques_Hadamard Jacques Hadamard] and [http://en.wikipedia.org/wiki/Charles_Jean_de_la_Vall%C3%A9e-Poussin Charles Jean de la Vallée-Poussin] independently prove the [http://en.wikipedia.org/wiki/Prime_number_theorem prime number theorem], | ||
− | * [http://en.wikipedia.org/wiki/1896 1896] - [http://en.wikipedia.org/wiki/Hermann_Minkowski Hermann Minkowski] presents <em>Geometry of numbers</em>, | + | * [http://en.wikipedia.org/wiki/1896 1896] - [http://en.wikipedia.org/wiki/Hermann_Minkowski Hermann Minkowski] presents <em style="">Geometry of numbers</em>, |
* 1887 - 12월 22일, 라마누잔 탄생([[라마누잔(1887- 1920)|라마누잔의 수학]]) | * 1887 - 12월 22일, 라마누잔 탄생([[라마누잔(1887- 1920)|라마누잔의 수학]]) | ||
* [http://en.wikipedia.org/wiki/1899 1899] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] discovers a contradiction in his set theory, | * [http://en.wikipedia.org/wiki/1899 1899] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] discovers a contradiction in his set theory, | ||
− | * [http://en.wikipedia.org/wiki/1899 1899] - [http://en.wikipedia.org/wiki/David_Hilbert David Hilbert] presents a set of self-consistent geometric axioms in <em>Foundations of Geometry</em>, | + | * [http://en.wikipedia.org/wiki/1899 1899] - [http://en.wikipedia.org/wiki/David_Hilbert David Hilbert] presents a set of self-consistent geometric axioms in <em style="">Foundations of Geometry</em>, |
* [http://en.wikipedia.org/wiki/1900 1900] - David Hilbert states his [http://en.wikipedia.org/wiki/Hilbert%27s_problems list of 23 problems] which show where some further mathematical work is needed. | * [http://en.wikipedia.org/wiki/1900 1900] - David Hilbert states his [http://en.wikipedia.org/wiki/Hilbert%27s_problems list of 23 problems] which show where some further mathematical work is needed. | ||
120번째 줄: | 120번째 줄: | ||
* [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Josip_Plemelj Josip Plemelj] solves the Riemann problem about the existence of a differential equation with a given [http://en.wikipedia.org/wiki/Monodromic_group monodromic group] and uses Sokhotsky - Plemelj formulae, | * [http://en.wikipedia.org/wiki/1908 1908] - [http://en.wikipedia.org/wiki/Josip_Plemelj Josip Plemelj] solves the Riemann problem about the existence of a differential equation with a given [http://en.wikipedia.org/wiki/Monodromic_group monodromic group] and uses Sokhotsky - Plemelj formulae, | ||
* [http://en.wikipedia.org/wiki/1912 1912] - [http://en.wikipedia.org/wiki/Luitzen_Egbertus_Jan_Brouwer Luitzen Egbertus Jan Brouwer] presents the [http://en.wikipedia.org/wiki/Brouwer_fixed-point_theorem Brouwer fixed-point theorem], | * [http://en.wikipedia.org/wiki/1912 1912] - [http://en.wikipedia.org/wiki/Luitzen_Egbertus_Jan_Brouwer Luitzen Egbertus Jan Brouwer] presents the [http://en.wikipedia.org/wiki/Brouwer_fixed-point_theorem Brouwer fixed-point theorem], | ||
− | * [http://en.wikipedia.org/wiki/1912 1912] - Josip Plemelj publishes simplified proof for the Fermat's Last Theorem for exponent <em>n</em> = 5, | + | * [http://en.wikipedia.org/wiki/1912 1912] - Josip Plemelj publishes simplified proof for the Fermat's Last Theorem for exponent <em style="">n</em> = 5, |
* [http://en.wikipedia.org/wiki/1913 1913] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] sends a long list of complex theorems without proofs to [http://en.wikipedia.org/wiki/G._H._Hardy G. H. Hardy], | * [http://en.wikipedia.org/wiki/1913 1913] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] sends a long list of complex theorems without proofs to [http://en.wikipedia.org/wiki/G._H._Hardy G. H. Hardy], | ||
− | * [http://en.wikipedia.org/wiki/1914 1914] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] publishes <em>Modular Equations and Approximations to π</em>, | + | * [http://en.wikipedia.org/wiki/1914 1914] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] publishes <em style="">Modular Equations and Approximations to π</em>, |
* [http://en.wikipedia.org/wiki/1916 1916] - [http://en.wikipedia.org/wiki/Albert_Einstein Einstein's] theory of [http://en.wikipedia.org/wiki/General_relativity general relativity]. | * [http://en.wikipedia.org/wiki/1916 1916] - [http://en.wikipedia.org/wiki/Albert_Einstein Einstein's] theory of [http://en.wikipedia.org/wiki/General_relativity general relativity]. | ||
* [http://en.wikipedia.org/wiki/1910s 1910s] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] develops over 3000 theorems, including properties of [http://en.wikipedia.org/wiki/Highly_composite_number highly composite numbers], the [http://en.wikipedia.org/wiki/Partition_function_%28number_theory%29 partition function] and its [http://en.wikipedia.org/wiki/Asymptotics asymptotics], and [http://en.wikipedia.org/wiki/Ramanujan_theta_function mock theta functions]. He also makes major breakthroughs and discoveries in the areas of [http://en.wikipedia.org/wiki/Gamma_function gamma functions], [http://en.wikipedia.org/wiki/Modular_form modular forms], [http://en.wikipedia.org/wiki/Divergent_series divergent series], [http://en.wikipedia.org/wiki/Hypergeometric_series hypergeometric series] and [http://en.wikipedia.org/wiki/Prime_number_theory prime number theory] | * [http://en.wikipedia.org/wiki/1910s 1910s] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] develops over 3000 theorems, including properties of [http://en.wikipedia.org/wiki/Highly_composite_number highly composite numbers], the [http://en.wikipedia.org/wiki/Partition_function_%28number_theory%29 partition function] and its [http://en.wikipedia.org/wiki/Asymptotics asymptotics], and [http://en.wikipedia.org/wiki/Ramanujan_theta_function mock theta functions]. He also makes major breakthroughs and discoveries in the areas of [http://en.wikipedia.org/wiki/Gamma_function gamma functions], [http://en.wikipedia.org/wiki/Modular_form modular forms], [http://en.wikipedia.org/wiki/Divergent_series divergent series], [http://en.wikipedia.org/wiki/Hypergeometric_series hypergeometric series] and [http://en.wikipedia.org/wiki/Prime_number_theory prime number theory] | ||
− | * [http://en.wikipedia.org/wiki/1919 1919] - [http://en.wikipedia.org/wiki/Viggo_Brun Viggo Brun] defines [http://en.wikipedia.org/wiki/Brun%27s_constant Brun's constant]<em>B</em><sub>2</sub> for [http://en.wikipedia.org/wiki/Twin_prime twin primes], | + | * [http://en.wikipedia.org/wiki/1919 1919] - [http://en.wikipedia.org/wiki/Viggo_Brun Viggo Brun] defines [http://en.wikipedia.org/wiki/Brun%27s_constant Brun's constant]<em style="">B</em><sub style="">2</sub> for [http://en.wikipedia.org/wiki/Twin_prime twin primes], |
* 1920 - 4월 26일 라마누잔 사망 | * 1920 - 4월 26일 라마누잔 사망 | ||
* [http://en.wikipedia.org/wiki/1928 1928] - [http://en.wikipedia.org/wiki/John_von_Neumann John von Neumann] begins devising the principles of [http://en.wikipedia.org/wiki/Game_theory game theory] and proves the [http://en.wikipedia.org/wiki/Minimax_theorem minimax theorem], | * [http://en.wikipedia.org/wiki/1928 1928] - [http://en.wikipedia.org/wiki/John_von_Neumann John von Neumann] begins devising the principles of [http://en.wikipedia.org/wiki/Game_theory game theory] and proves the [http://en.wikipedia.org/wiki/Minimax_theorem minimax theorem], | ||
132번째 줄: | 132번째 줄: | ||
* [http://en.wikipedia.org/wiki/1931 1931] - [http://en.wikipedia.org/wiki/Georges_de_Rham Georges de Rham] develops theorems in [http://en.wikipedia.org/wiki/Cohomology cohomology] and [http://en.wikipedia.org/wiki/Characteristic_class characteristic classes], | * [http://en.wikipedia.org/wiki/1931 1931] - [http://en.wikipedia.org/wiki/Georges_de_Rham Georges de Rham] develops theorems in [http://en.wikipedia.org/wiki/Cohomology cohomology] and [http://en.wikipedia.org/wiki/Characteristic_class characteristic classes], | ||
* [http://en.wikipedia.org/wiki/1933 1933] - [http://en.wikipedia.org/wiki/Karol_Borsuk Karol Borsuk] and [http://en.wikipedia.org/wiki/Stanislaw_Ulam Stanislaw Ulam] present the [http://en.wikipedia.org/wiki/Borsuk-Ulam_Theorem Borsuk-Ulam antipodal-point theorem], | * [http://en.wikipedia.org/wiki/1933 1933] - [http://en.wikipedia.org/wiki/Karol_Borsuk Karol Borsuk] and [http://en.wikipedia.org/wiki/Stanislaw_Ulam Stanislaw Ulam] present the [http://en.wikipedia.org/wiki/Borsuk-Ulam_Theorem Borsuk-Ulam antipodal-point theorem], | ||
− | * [http://en.wikipedia.org/wiki/1933 1933] - [http://en.wikipedia.org/wiki/Andrey_Nikolaevich_Kolmogorov Andrey Nikolaevich Kolmogorov] publishes his book <em>Basic notions of the calculus of probability</em> (<em>Grundbegriffe der Wahrscheinlichkeitsrechnung</em>) which contains an [http://en.wikipedia.org/wiki/Probability_axiom axiomatization of probability] based on [http://en.wikipedia.org/wiki/Measure_theory measure theory], | + | * [http://en.wikipedia.org/wiki/1933 1933] - [http://en.wikipedia.org/wiki/Andrey_Nikolaevich_Kolmogorov Andrey Nikolaevich Kolmogorov] publishes his book <em style="">Basic notions of the calculus of probability</em> (<em style="">Grundbegriffe der Wahrscheinlichkeitsrechnung</em>) which contains an [http://en.wikipedia.org/wiki/Probability_axiom axiomatization of probability] based on [http://en.wikipedia.org/wiki/Measure_theory measure theory], |
* [http://en.wikipedia.org/wiki/1940 1940] - Kurt Gödel shows that neither the [http://en.wikipedia.org/wiki/Continuum_hypothesis continuum hypothesis] nor the [http://en.wikipedia.org/wiki/Axiom_of_choice axiom of choice] can be disproven from the standard axioms of set theory, | * [http://en.wikipedia.org/wiki/1940 1940] - Kurt Gödel shows that neither the [http://en.wikipedia.org/wiki/Continuum_hypothesis continuum hypothesis] nor the [http://en.wikipedia.org/wiki/Axiom_of_choice axiom of choice] can be disproven from the standard axioms of set theory, | ||
* [http://en.wikipedia.org/wiki/1942 1942] - [http://en.wikipedia.org/wiki/G.C._Danielson G.C. Danielson] and [http://en.wikipedia.org/wiki/Cornelius_Lanczos Cornelius Lanczos] develop a [http://en.wikipedia.org/wiki/Fast_Fourier_Transform Fast Fourier Transform] algorithm, | * [http://en.wikipedia.org/wiki/1942 1942] - [http://en.wikipedia.org/wiki/G.C._Danielson G.C. Danielson] and [http://en.wikipedia.org/wiki/Cornelius_Lanczos Cornelius Lanczos] develop a [http://en.wikipedia.org/wiki/Fast_Fourier_Transform Fast Fourier Transform] algorithm, | ||
157번째 줄: | 157번째 줄: | ||
* [http://en.wikipedia.org/wiki/1968 1968] - [http://en.wikipedia.org/wiki/Michael_Atiyah Michael Atiyah] and [http://en.wikipedia.org/wiki/Isadore_Singer Isadore Singer] prove the [http://en.wikipedia.org/wiki/Atiyah-Singer_index_theorem Atiyah-Singer index theorem] about the index of [http://en.wikipedia.org/wiki/Elliptic_operator elliptic operators], | * [http://en.wikipedia.org/wiki/1968 1968] - [http://en.wikipedia.org/wiki/Michael_Atiyah Michael Atiyah] and [http://en.wikipedia.org/wiki/Isadore_Singer Isadore Singer] prove the [http://en.wikipedia.org/wiki/Atiyah-Singer_index_theorem Atiyah-Singer index theorem] about the index of [http://en.wikipedia.org/wiki/Elliptic_operator elliptic operators], | ||
* [http://en.wikipedia.org/wiki/1973 1973] - [http://en.wikipedia.org/wiki/Lotfi_Zadeh Lotfi Zadeh] founded the field of [http://en.wikipedia.org/wiki/Fuzzy_logic fuzzy logic], | * [http://en.wikipedia.org/wiki/1973 1973] - [http://en.wikipedia.org/wiki/Lotfi_Zadeh Lotfi Zadeh] founded the field of [http://en.wikipedia.org/wiki/Fuzzy_logic fuzzy logic], | ||
− | * [http://en.wikipedia.org/wiki/1975 1975] - [http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot Benoît Mandelbrot] publishes <em>Les objets fractals, forme, hasard et dimension</em>, | + | * [http://en.wikipedia.org/wiki/1975 1975] - [http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot Benoît Mandelbrot] publishes <em style="">Les objets fractals, forme, hasard et dimension</em>, |
* [http://en.wikipedia.org/wiki/1976 1976] - [http://en.wikipedia.org/wiki/Kenneth_Appel Kenneth Appel] and [http://en.wikipedia.org/wiki/Wolfgang_Haken Wolfgang Haken] use a computer to prove the [http://en.wikipedia.org/wiki/Four_color_theorem Four color theorem], | * [http://en.wikipedia.org/wiki/1976 1976] - [http://en.wikipedia.org/wiki/Kenneth_Appel Kenneth Appel] and [http://en.wikipedia.org/wiki/Wolfgang_Haken Wolfgang Haken] use a computer to prove the [http://en.wikipedia.org/wiki/Four_color_theorem Four color theorem], | ||
* [http://en.wikipedia.org/wiki/1983 1983] - [http://en.wikipedia.org/wiki/Gerd_Faltings Gerd Faltings] proves the [http://en.wikipedia.org/wiki/Mordell_conjecture Mordell conjecture] and thereby shows that there are only finitely many whole number solutions for each exponent of Fermat's Last Theorem, | * [http://en.wikipedia.org/wiki/1983 1983] - [http://en.wikipedia.org/wiki/Gerd_Faltings Gerd Faltings] proves the [http://en.wikipedia.org/wiki/Mordell_conjecture Mordell conjecture] and thereby shows that there are only finitely many whole number solutions for each exponent of Fermat's Last Theorem, |
2009년 6월 27일 (토) 16:39 판
- 페르마의 마지막 정리 참조
17세기
- 1600s - Putumana Somayaji writes the "Paddhati", which presents a detailed discussion of various trigonometric series
- 1614 - John Napier discusses Napierian logarithms in Mirifici Logarithmorum Canonis Descriptio,
- 1617 - Henry Briggs discusses decimal logarithms in Logarithmorum Chilias Prima,
- 1618 - John Napier publishes the first references to e in a work on logarithms.
- 1619 - René Descartes discovers analytic geometry (Pierre de Fermat claimed that he also discovered it independently),
- 1619 - Johannes Kepler discovers two of the Kepler-Poinsot polyhedra.
- 1629 - Pierre de Fermat develops a rudimentary differential calculus,
- 1634 - Gilles de Roberval shows that the area under a cycloid is three times the area of its generating circle,
- 1636 - Muhammad Baqir Yazdi jointly discovered the pair of amicable numbers 9,363,584 and 9,437,056 along with Descartes (1636).[6]
- 1637 - Pierre de Fermat claims to have proven Fermat's Last Theorem in his copy of Diophantus' Arithmetica,
- 1637 - First use of the term imaginary number by René Descartes; it was meant to be derogatory.
- 1654 - Blaise Pascal and Pierre de Fermat create the theory of probability,
- 1655 - John Wallis writes Arithmetica Infinitorum,
- 1658 - Christopher Wren shows that the length of a cycloid is four times the diameter of its generating circle,
- 1665 - Isaac Newton works on the fundamental theorem of calculus and develops his version of infinitesimal calculus,
- 1668 - Nicholas Mercator and William Brouncker discover an infinite series for the logarithm while attempting to calculate the area under a hyperbolic segment,
- 1671 - James Gregory develops a series expansion for the inverse-tangent function (originally discovered by Madhava)
- 1673 - Gottfried Leibniz also develops his version of infinitesimal calculus,
- 1675 - Isaac Newton invents an algorithm for the computation of functional roots,
- 1680s - Gottfried Leibniz works on symbolic logic,
- 1691 - Gottfried Leibniz discovers the technique of separation of variables for ordinary differential equations,
- 1693 - Edmund Halley prepares the first mortality tables statistically relating death rate to age,
- 1696 - Guillaume de L'Hôpital states his rule for the computation of certain limits,
- 1696 - Jakob Bernoulli and Johann Bernoulli solve brachistochrone problem, the first result in the calculus of variations,
18세기
- 1706 - John Machin develops a quickly converging inverse-tangent series for π and computes π to 100 decimal places,
- 1712 - Brook Taylor develops Taylor series,
- 1722 - Abraham de Moivre states de Moivre's formula connecting trigonometric functions and complex numbers,
- 1724 - Abraham De Moivre studies mortality statistics and the foundation of the theory of annuities in Annuities on Lives,
- 1730 - James Stirling publishes The Differential Method,
- 1733 - Giovanni Gerolamo Saccheri studies what geometry would be like if Euclid's fifth postulate were false,
- 1733 - Abraham de Moivre introduces the normal distribution to approximate the binomial distribution in probability,
- 1734 - Leonhard Euler introduces the integrating factor technique for solving first-order ordinary differential equations,
- 1735 - 오일러 바젤 문제를 해결함 오일러와 바젤문제(완전제곱수의 역수들의 합)
- 1736 - Leonhard Euler solves the problem of the Seven bridges of Königsberg, in effect creating graph theory,
- 1739 - Leonhard Euler solves the general homogeneous linear ordinary differential equation with constant coefficients,
- 1742 - Christian Goldbach conjectures that every even number greater than two can be expressed as the sum of two primes, now known as Goldbach's conjecture,
- 1748 - Maria Gaetana Agnesi discusses analysis in Instituzioni Analitiche ad Uso della Gioventu Italiana,
- 1761 - Thomas Bayes proves Bayes' theorem,
- 1762 - Joseph Louis Lagrange discovers the divergence theorem,
- 1789 - Jurij Vega improves Machin's formula and computes π to 140 decimal places,
- 1794 - Jurij Vega publishes Thesaurus Logarithmorum Completus,
- 1796 - Carl Friedrich Gauss proves that the regular 17-gon can be constructed using only a compass and straightedge
- 1796 - Adrien-Marie Legendre conjectures the prime number theorem,
- 1797 - Caspar Wessel associates vectors with complex numbers and studies complex number operations in geometrical terms,
- 1799 - Carl Friedrich Gauss proves the fundamental theorem of algebra (every polynomial equation has a solution among the complex numbers),
- 1799 - Paolo Ruffini partially proves the Abel–Ruffini theorem that quintic or higher equations cannot be solved by a general formula,
19세기
- 1801 - Disquisitiones Arithmeticae, Carl Friedrich Gauss's number theory treatise, is published in Latin
- 1805 - Adrien-Marie Legendre introduces the method of least squares for fitting a curve to a given set of observations,
- 1806 - Louis Poinsot discovers the two remaining Kepler-Poinsot polyhedra.
- 1806 - Jean-Robert Argand publishes proof of the Fundamental theorem of algebra and the Argand diagram,
- 1807 - Joseph Fourier announces his discoveries about the trigonometric decomposition of functions,
- 1811 - Carl Friedrich Gauss discusses the meaning of integrals with complex limits and briefly examines the dependence of such integrals on the chosen path of integration,
- 1815 - Siméon-Denis Poisson carries out integrations along paths in the complex plane,
- 1817 - Bernard Bolzano presents the intermediate value theorem---a continuous function which is negative at one point and positive at another point must be zero for at least one point in between,
- 1822 - Augustin-Louis Cauchy presents the Cauchy integral theorem for integration around the boundary of a rectangle in the complex plane,
- 1824 - Niels Henrik Abel partially proves the Abel–Ruffini theorem that the general quintic or higher equations cannot be solved by a general formula involving only arithmetical operations and roots,
- 1825 - Augustin-Louis Cauchy presents the Cauchy integral theorem for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of residues in complex analysis,
- 1825 - Johann Peter Gustav Lejeune Dirichlet and Adrien-Marie Legendre prove Fermat's Last Theorem for n = 5,
- 1825 - André-Marie Ampère discovers Stokes' theorem,
- 1828 - George Green proves Green's theorem,
- 1829 - 볼리아이, 가우스, 로바체프스키가 쌍곡기하학을 발견
- 1831 - Mikhail Vasilievich Ostrogradsky rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green,
- 1832 - Évariste Galois presents a general condition for the solvability of algebraic equations, thereby essentially founding group theory and Galois theory,
- 1832 - 디리클레가 n = 14인 경우의 페르마의 마지막 정리를 증명
- 1835 - 디리클레가 등차수열의 소수분포에 관한 디리클레 정리를 증명
- 1837 - 피에르 완첼(Pierre Wantsel)이 두배의 부피를 갖는 정육면체(The duplication of the cube)과 각의 3등분(The trisection of an angle) 문제가 자와 컴파스로 해결불가능임을 증명, as well as the full completion of the problem of constructability of regular polygons
- 1841 - Karl Weierstrass discovers but does not publish the Laurent expansion theorem,
- 1843 - Pierre-Alphonse Laurent discovers and presents the Laurent expansion theorem,
- 1843 - William Hamilton discovers the calculus of quaternions and deduces that they are non-commutative,
- 1847 - George Boole formalizes symbolic logic in The Mathematical Analysis of Logic, defining what is now called Boolean algebra,
- 1849 - George Gabriel Stokes shows that solitary waves can arise from a combination of periodic waves,
- 1850 - Victor Alexandre Puiseux distinguishes between poles and branch points and introduces the concept of essential singular points,
- 1850 - George Gabriel Stokes rediscovers and proves Stokes' theorem,
- 1854 - Bernhard Riemann introduces Riemannian geometry,
- 1854 - Arthur Cayley shows that quaternions can be used to represent rotations in four-dimensional space,
- 1858 - 뫼비우스가 뫼비우스의 띠를 발견
- 1859 - Bernhard Riemann formulates the Riemann hypothesis which has strong implications about the distribution of prime numbers,
- 1870 - Felix Klein constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
- 1873 - Charles Hermite proves that e is transcendental, 자연상수 e는 초월수이다
- 1873 - Georg Frobenius presents his method for finding series solutions to linear differential equations with regular singular points,
- 1874 - Georg Cantor shows that the set of all real numbers is uncountably infinite but the set of all algebraic numbers is countably infinite. Contrary to widely held beliefs, his method was not his famous diagonal argument, which he published three years later. (Nor did he formulate set theory at this time.)
- 1878 - Charles Hermite solves the general quintic equation by means of elliptic and modular functions
- 1882 - 린데만이 파이는 초월수임을 증명하고 따라서 원이 자와 컴파스로 작도 불가능함을 증명
- 1882 - 펠릭스 클라인이 클라인씨의 병을 발견
- 1895 - Diederik Korteweg and Gustav de Vries derive the KdV equation to describe the development of long solitary water waves in a canal of rectangular cross section,
- 1895 - Georg Cantor publishes a book about set theory containing the arithmetic of infinite cardinal numbers and the continuum hypothesis,
- 1896 - Jacques Hadamard and Charles Jean de la Vallée-Poussin independently prove the prime number theorem,
- 1896 - Hermann Minkowski presents Geometry of numbers,
- 1887 - 12월 22일, 라마누잔 탄생(라마누잔의 수학)
- 1899 - Georg Cantor discovers a contradiction in his set theory,
- 1899 - David Hilbert presents a set of self-consistent geometric axioms in Foundations of Geometry,
- 1900 - David Hilbert states his list of 23 problems which show where some further mathematical work is needed.
20세기
- 1901 - Élie Cartan develops the exterior derivative,
- 1903 - Carle David Tolme Runge presents a fast Fourier Transform algorithm,
- 1903 - Edmund Georg Hermann Landau gives considerably simpler proof of the prime number theorem.
- 1905 - Einstein's theory of special relativity.
- 1908 - Ernst Zermelo axiomizes set theory, thus avoiding Cantor's contradictions,
- 1908 - Josip Plemelj solves the Riemann problem about the existence of a differential equation with a given monodromic group and uses Sokhotsky - Plemelj formulae,
- 1912 - Luitzen Egbertus Jan Brouwer presents the Brouwer fixed-point theorem,
- 1912 - Josip Plemelj publishes simplified proof for the Fermat's Last Theorem for exponent n = 5,
- 1913 - Srinivasa Aaiyangar Ramanujan sends a long list of complex theorems without proofs to G. H. Hardy,
- 1914 - Srinivasa Aaiyangar Ramanujan publishes Modular Equations and Approximations to π,
- 1916 - Einstein's theory of general relativity.
- 1910s - Srinivasa Aaiyangar Ramanujan develops over 3000 theorems, including properties of highly composite numbers, the partition function and its asymptotics, and mock theta functions. He also makes major breakthroughs and discoveries in the areas of gamma functions, modular forms, divergent series, hypergeometric series and prime number theory
- 1919 - Viggo Brun defines Brun's constantB2 for twin primes,
- 1920 - 4월 26일 라마누잔 사망
- 1928 - John von Neumann begins devising the principles of game theory and proves the minimax theorem,
- 1930 - Casimir Kuratowski shows that the three-cottage problem has no solution,
- 1931 - Kurt Gödel proves his incompleteness theorem which shows that every axiomatic system for mathematics is either incomplete or inconsistent,
- 1931 - Georges de Rham develops theorems in cohomology and characteristic classes,
- 1933 - Karol Borsuk and Stanislaw Ulam present the Borsuk-Ulam antipodal-point theorem,
- 1933 - Andrey Nikolaevich Kolmogorov publishes his book Basic notions of the calculus of probability (Grundbegriffe der Wahrscheinlichkeitsrechnung) which contains an axiomatization of probability based on measure theory,
- 1940 - Kurt Gödel shows that neither the continuum hypothesis nor the axiom of choice can be disproven from the standard axioms of set theory,
- 1942 - G.C. Danielson and Cornelius Lanczos develop a Fast Fourier Transform algorithm,
- 1943 - Kenneth Levenberg proposes a method for nonlinear least squares fitting,
- 1948 - John von Neumann mathematically studies self-reproducing machines,
- 1949 - John von Neumann computes π to 2,037 decimal places using ENIAC,
- 1950 - Stanislaw Ulam and John von Neumann present cellular automata dynamical systems,
- 1953 - Nicholas Metropolis introduces the idea of thermodynamic simulated annealing algorithms,
- 1955 - H. S. M. Coxeter et al. publish the complete list of uniform polyhedron,
- 1955 - Enrico Fermi, John Pasta, and Stanislaw Ulam numerically study a nonlinear spring model of heat conduction and discover solitary wave type behavior,
- 1960 - C. A. R. Hoare invents the quicksort algorithm,
- 1960 - Irving S. Reed and Gustave Solomon present the Reed-Solomon error-correcting code,
- 1961 - Daniel Shanks and John Wrench compute π to 100,000 decimal places using an inverse-tangent identity and an IBM-7090 computer,
- 1962 - Donald Marquardt proposes the Levenberg-Marquardt nonlinear least squares fitting algorithm,
- 1963 - Paul Cohen uses his technique of forcing to show that neither the continuum hypothesis nor the axiom of choice can be proven from the standard axioms of set theory,
- 1963 - Martin Kruskal and Norman Zabusky analytically study the Fermi-Pasta-Ulam heat conduction problem in the continuum limit and find that the KdV equation governs this system,
- 1963 - meteorologist and mathematician Edward Norton Lorenz published solutions for a simplified mathematical model of atmospheric turbulence - generally known as chaotic behaviour and strange attractors or Lorenz Attractor - also the Butterfly Effect,
- 1965 - Iranian mathematician Lotfi Asker Zadeh founded fuzzy set theory as an extension of the classical notion of set and he founded the field of Fuzzy Mathematics,
- 1965 - Martin Kruskal and Norman Zabusky numerically study colliding solitary waves in plasmas and find that they do not disperse after collisions,
- 1965 - James Cooley and John Tukey present an influential Fast Fourier Transform algorithm,
- 1966 - E.J. Putzer presents two methods for computing the exponential of a matrix in terms of a polynomial in that matrix,
- 1966 - Abraham Robinson presents Non-standard analysis.
- 1967 - Robert Langlands formulates the influential Langlands program of conjectures relating number theory and representation theory,
- 1968 - Michael Atiyah and Isadore Singer prove the Atiyah-Singer index theorem about the index of elliptic operators,
- 1973 - Lotfi Zadeh founded the field of fuzzy logic,
- 1975 - Benoît Mandelbrot publishes Les objets fractals, forme, hasard et dimension,
- 1976 - Kenneth Appel and Wolfgang Haken use a computer to prove the Four color theorem,
- 1983 - Gerd Faltings proves the Mordell conjecture and thereby shows that there are only finitely many whole number solutions for each exponent of Fermat's Last Theorem,
- 1983 - 유한단순군의 분류 완료
- 1985 - Louis de Branges de Bourcia proves the Bieberbach conjecture,
- 1987 - Yasumasa Kanada, David Bailey, Jonathan Borwein, and Peter Borwein use iterative modular equation approximations to elliptic integrals and a NEC SX-2supercomputer to compute π to 134 million decimal places,
- 1991 - Alain Connes and John W. Lott develop non-commutative geometry,
- 1994 - Andrew Wiles proves part of the Taniyama-Shimura conjecture and thereby 페르마의 마지막 정리 증명
- 1998 - Thomas Callister Hales (almost certainly) 케플러의 추측 증명
- 1999 - the full Taniyama-Shimura conjecture is proved,
- 2000 - the Clay Mathematics Institute proposes the seven Millennium Prize Problems of unsolved important classic mathematical questions.
하위주제들
하위페이지
재미있는 사실
관련된 단원
많이 나오는 질문
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
참고할만한 자료
- http://en.wikipedia.org/wiki/Timeline_of_mathematics
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://viswiki.com/en/
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
- 대한수학회 수학 학술 용어집
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=수학사
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com