"슈바르츠 미분(Schwarzian derivative)"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
1번째 줄: | 1번째 줄: | ||
− | + | ==이 항목의 수학노트 원문주소</h5> | |
* [[슈바르츠 미분(Schwarzian derivative)]] | * [[슈바르츠 미분(Schwarzian derivative)]] | ||
7번째 줄: | 7번째 줄: | ||
− | + | ==개요</h5> | |
* 복소함수 f 에 대하여, 슈바르츠 미분을 다음과 같이 정의함<br><math>(Sf)(z) = \left({f''(z) \over f'(z)}\right)' - {1\over 2}\left({f''(z)\over f'(z)}\right)^2</math><br><math> = {f'''(z) \over f'(z)}-{3\over 2}\left({f''(z)\over f'(z)}\right)^2</math><br> | * 복소함수 f 에 대하여, 슈바르츠 미분을 다음과 같이 정의함<br><math>(Sf)(z) = \left({f''(z) \over f'(z)}\right)' - {1\over 2}\left({f''(z)\over f'(z)}\right)^2</math><br><math> = {f'''(z) \over f'(z)}-{3\over 2}\left({f''(z)\over f'(z)}\right)^2</math><br> | ||
16번째 줄: | 16번째 줄: | ||
− | + | ==뫼비우스 변환</h5> | |
* <math>F(z)=\frac{af(z)+b}{cf(z)+d}</math> 일 때, <math>\{f,z\}=\{F,z\}</math> 가 성립한다<br> | * <math>F(z)=\frac{af(z)+b}{cf(z)+d}</math> 일 때, <math>\{f,z\}=\{F,z\}</math> 가 성립한다<br> | ||
25번째 줄: | 25번째 줄: | ||
− | + | ==이계 선형 미분방정식</h5> | |
* 다음 형태의 [[이계 선형 미분방정식]]을 생각하자<br><math>u''(z)+P(z)u(z)=0</math><br> | * 다음 형태의 [[이계 선형 미분방정식]]을 생각하자<br><math>u''(z)+P(z)u(z)=0</math><br> | ||
34번째 줄: | 34번째 줄: | ||
− | + | ==슈바르츠 s-함수</h5> | |
(정리) | (정리) | ||
70번째 줄: | 70번째 줄: | ||
− | + | ==역사</h5> | |
81번째 줄: | 81번째 줄: | ||
− | + | ==메모</h5> | |
* [http://delta.cs.cinvestav.mx/%7Emcintosh/comun/complex/node18.html http://delta.cs.cinvestav.mx/~mcintosh/comun/complex/node18.html] | * [http://delta.cs.cinvestav.mx/%7Emcintosh/comun/complex/node18.html http://delta.cs.cinvestav.mx/~mcintosh/comun/complex/node18.html] | ||
94번째 줄: | 94번째 줄: | ||
− | + | ==관련된 항목들</h5> | |
100번째 줄: | 100번째 줄: | ||
− | + | ==수학용어번역</h5> | |
* 단어사전<br> | * 단어사전<br> | ||
117번째 줄: | 117번째 줄: | ||
− | + | ==매스매티카 파일 및 계산 리소스</h5> | |
* https://docs.google.com/file/d/0B8XXo8Tve1cxeWVpa1QzQ0daOGc/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxeWVpa1QzQ0daOGc/edit | ||
132번째 줄: | 132번째 줄: | ||
− | + | ==사전 형태의 자료</h5> | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
144번째 줄: | 144번째 줄: | ||
− | + | ==리뷰논문, 에세이, 강의노트</h5> | |
152번째 줄: | 152번째 줄: | ||
− | + | ==관련논문</h5> | |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
162번째 줄: | 162번째 줄: | ||
− | + | ==관련도서</h5> | |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 10월 31일 (수) 22:39 판
==이 항목의 수학노트 원문주소
==개요
- 복소함수 f 에 대하여, 슈바르츠 미분을 다음과 같이 정의함
\((Sf)(z) = \left({f''(z) \over f'(z)}\right)' - {1\over 2}\left({f''(z)\over f'(z)}\right)^2\)
\( = {f'''(z) \over f'(z)}-{3\over 2}\left({f''(z)\over f'(z)}\right)^2\) - \(\{f,z\}:=(Sf)(z)\)
==뫼비우스 변환
- \(F(z)=\frac{af(z)+b}{cf(z)+d}\) 일 때, \(\{f,z\}=\{F,z\}\) 가 성립한다
- \(\{f,z\}=0\) 이면, \(f(z)=\frac{az+b}{cz+d}\)
==이계 선형 미분방정식
- 다음 형태의 이계 선형 미분방정식을 생각하자
\(u''(z)+P(z)u(z)=0\) - \(u_1(z), u_2(z)\) 가 이 미분방정식의 일차독립인 두 해이면, \(w(z)=\frac{u_1(z)}{u_2(z)}\) 는 다음 미분방정식의 해이다
\(\{w,z\}=2P(z)\)
==슈바르츠 s-함수
(정리)
복소상반평면을 \(\alpha\pi,\beta\pi,\gamma\pi\) 를 세 각으로 갖는 삼각형으로 보내는 해석함수 \(w=s(z)\)는 다음 초기하미분방정식\(z(1-z)y''+(c-(a+b+1)z)y'-aby = 0\) 의 선형독립인 두 해, \(y_1(z),y_2(z)\) 의 비로 표현할 수 있다. 즉 \(w=\frac{y_1(z)}{y_2(z)}\) 이다.
여기서 \(\alpha =1-c,\beta =a-b,\gamma =-a-b+c\).
(증명)
\(P(z)=\frac{1}{4}\left(\frac{1-\alpha ^2}{z^2}+\frac{1-\gamma ^2}{(z-1)^2}+\frac{\alpha ^2+\gamma ^2-\beta ^2-1}{z(z-1)}\right)\) 라 하자.
원하는 해석함수는 미분방정식 \(\{w,z\}=2P(z)\)의 해이다.
위에서 서술한대로
\(u''(z)+P(z)u(z)=0\)의 선형독립인 두 해 \(u_1(z), u_2(z)\)에 대하여, \(w(z)=\frac{u_1(z)}{u_2(z)}\) 로 표현할 수 있다.
이계 선형 미분방정식 에서 얻은 결과에 따라, 미분방정식 \(u''(z)+P(z)u(z)=0\)를 초기하 미분방정식(Hypergeometric differential equations) 형태로 변형할 수 있다.
따라서 \(z(1-z)y''+(c-(a+b+1)z)y'-aby = 0\) 의 선형독립인 두 해, \(y_1(z),y_2(z)\)에 대하여, \(w(z)=\frac{y_1(z)}{y_2(z)}\)로 쓸 수 있다. ■
- 슈바르츠 삼각형 함수 (s-함수) 에 응용된다
==역사
==메모
- http://delta.cs.cinvestav.mx/~mcintosh/comun/complex/node18.html
- http://en.wikipedia.org/wiki/Hypergeometric_function#Q-form
- http://delta.cs.cinvestav.mx/~mcintosh/comun/complex/node54.html
- http://www.ams.org/notices/200901/tx090100034p.pdf
- Math Overflow http://mathoverflow.net/search?q=
==관련된 항목들
==수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
==매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxeWVpa1QzQ0daOGc/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
==사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Schwarzian_derivative
- http://www.encyclopediaofmath.org/index.php/Schwarzian_derivative
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
==리뷰논문, 에세이, 강의노트
==관련논문
==관련도서