"여인수(cofactor)와 행렬의 adjugate"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소== |
* [[여인수(cofactor)와 행렬의 adjugate|cofactor와 행렬의 adjoint]] | * [[여인수(cofactor)와 행렬의 adjugate|cofactor와 행렬의 adjoint]] | ||
7번째 줄: | 7번째 줄: | ||
− | ==개요 | + | ==개요== |
* 정방행렬 <math>A=(a_{ij})</math> 에서 i행과 j열을 지워얻어진 정방행렬의 행렬식을 <math>b_{ij}</math>라 하자. <math>c_{ij}=(-1)^{i+j}b_{ij}</math> 를 (i,j)-cofactor 라 한다 | * 정방행렬 <math>A=(a_{ij})</math> 에서 i행과 j열을 지워얻어진 정방행렬의 행렬식을 <math>b_{ij}</math>라 하자. <math>c_{ij}=(-1)^{i+j}b_{ij}</math> 를 (i,j)-cofactor 라 한다 | ||
30번째 줄: | 30번째 줄: | ||
− | ==예 | + | ==예== |
<math>\left( \begin{array}{ccccc} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{array} \right)</math> 의 adjugate | <math>\left( \begin{array}{ccccc} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{array} \right)</math> 의 adjugate | ||
40번째 줄: | 40번째 줄: | ||
− | ==역사 | + | ==역사== |
51번째 줄: | 51번째 줄: | ||
− | ==메모 | + | ==메모== |
61번째 줄: | 61번째 줄: | ||
− | ==관련된 항목들 | + | ==관련된 항목들== |
67번째 줄: | 67번째 줄: | ||
− | ==매스매티카 파일 및 계산 리소스 | + | ==매스매티카 파일 및 계산 리소스== |
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxOWIzNmQyYzAtZTE5NC00NWJhLTkwMjYtYTVmMTU0N2U0MDI3&sort=name&layout=list&num=50 | * https://docs.google.com/leaf?id=0B8XXo8Tve1cxOWIzNmQyYzAtZTE5NC00NWJhLTkwMjYtYTVmMTU0N2U0MDI3&sort=name&layout=list&num=50 | ||
82번째 줄: | 82번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역== |
* 단어사전<br> | * 단어사전<br> | ||
103번째 줄: | 103번째 줄: | ||
− | ==사전 형태의 자료 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
115번째 줄: | 115번째 줄: | ||
− | ==리뷰논문, 에세이, 강의노트 | + | ==리뷰논문, 에세이, 강의노트== |
123번째 줄: | 123번째 줄: | ||
− | ==관련논문 | + | ==관련논문== |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
133번째 줄: | 133번째 줄: | ||
− | ==관련도서 | + | ==관련도서== |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 11월 1일 (목) 12:56 판
이 항목의 수학노트 원문주소==
개요
- 정방행렬 \(A=(a_{ij})\) 에서 i행과 j열을 지워얻어진 정방행렬의 행렬식을 \(b_{ij}\)라 하자. \(c_{ij}=(-1)^{i+j}b_{ij}\) 를 (i,j)-cofactor 라 한다
- cofactor 들로 주어진 행렬 \((c_{ij})\) 의 transpose 를 행렬 A 의 adjugate (또는 adjoint) 이라 한다
\(\left( \begin{array}{cc} a & b \\ c & d \end{array} \right)\)
\(\left( \begin{array}{cc} d & -b \\ -c & a \end{array} \right)\)
\(\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)\) 의 adjoint
\(\left( \begin{array}{ccc} -a_{2,3} a_{3,2}+a_{2,2} a_{3,3} & a_{1,3} a_{3,2}-a_{1,2} a_{3,3} & -a_{1,3} a_{2,2}+a_{1,2} a_{2,3} \\ a_{2,3} a_{3,1}-a_{2,1} a_{3,3} & -a_{1,3} a_{3,1}+a_{1,1} a_{3,3} & a_{1,3} a_{2,1}-a_{1,1} a_{2,3} \\ -a_{2,2} a_{3,1}+a_{2,1} a_{3,2} & a_{1,2} a_{3,1}-a_{1,1} a_{3,2} & -a_{1,2} a_{2,1}+a_{1,1} a_{2,2} \end{array} \right)\)
예
\(\left( \begin{array}{ccccc} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{array} \right)\) 의 adjugate
\(\left( \begin{array}{ccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{array} \right)\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxOWIzNmQyYzAtZTE5NC00NWJhLTkwMjYtYTVmMTU0N2U0MDI3&sort=name&layout=list&num=50
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
수학용어번역==
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=cofactor
- http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=adjoint
- cofactor - 여인수
- adjoint matrix - 딸림행렬, 수반행렬
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Adjugate_matrix
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문
관련도서
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=cofactor
- http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=adjoint
- cofactor - 여인수
- adjoint matrix - 딸림행렬, 수반행렬
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Adjugate_matrix
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문