"오일러 치환"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
* [[삼각치환]]
+
<h5>이 항목의 스프링노트 원문주소</h5>
  
 
 
 
 
5번째 줄: 5번째 줄:
 
 
 
 
  
[http://math.kongju.ac.kr/calculus/data/chap5/s3/s3.htm 삼각치환]
+
 
  
 
 
 
 
11번째 줄: 11번째 줄:
 
 
 
 
  
<math>y^2=ax^2+bx+c</math>를 <math>t</math>에 대한 유리함수로 매개화하는 것이 가장 중요한 아이디어이다. 
+
 
  
<math>y-y_0 = t(x-x_0)</math> passing through a point  <math>(x_0,y_0)</math>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
 
 
 
 
 +
 +
* <math>R(x,\sqrt{ax^2+bx+c})</math>의 적분<br><math>ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}</math> 으로 쓴 다음<br>
 +
* <math>ac-b^2</math>와 <math>a</math>의 부호에 따라, 적당히 치환<br>
  
 
 
 
 
  
오일러치환
+
* <math>R(x,\sqrt{ax^2+bx+c})</math> 형태의 적분을 유리함수의 적분으로 바꾸는 변수 <math>x=x(t)</math> 치환<br>
  
 +
* <math>y^2=ax^2+bx+c</math>를 <math>t</math>에 대한 유리함수로 매개화하는 것이 가장 중요한 아이디어이다. <br>
 +
* <math>y-y_0 = t(x-x_0)</math> passing through a point  <math>(x_0,y_0)</math><br>
  
 +
 
  
형태의 적분을 유리함수의 적분으로 바꾸는 변수 <math>x=x(t)</math> 치환
+
 
  
 
 
 
 
  
 
+
<h5 style="margin: 0px; line-height: 2em;">제1오일러치환</h5>
  
제1오일러치환
 
  
  
 +
 
  
 
 
 
 
39번째 줄: 45번째 줄:
 
 
 
 
  
제2오일러치환
+
<h5 style="margin: 0px; line-height: 2em;">제2오일러치환</h5>
  
 
 
 
 
118번째 줄: 124번째 줄:
 
Since we can factor the polynomial and one root is 2, we can also use the 3. Euler substitution:  
 
Since we can factor the polynomial and one root is 2, we can also use the 3. Euler substitution:  
 
 
 
 
 +
 +
 
 +
 +
<h5>재미있는 사실</h5>
 +
 +
 
 +
 +
* Math Overflow http://mathoverflow.net/search?q=
 +
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
  
 
 
 
 
  
 
 
 
 
'''Euler substitutions'''
 
Substitutions of the variable  in an integral
 
  
{| class="eq" style="margin: 1px 0px; line-height: 2em; width: 1322px; border-collapse: collapse; font-size: 1em; background-color: rgb(255, 255, 255);"
+
<h5>역사</h5>
|-
+
 
|  
+
 
|
 
|}
 
  
where  is a rational function of its arguments, that reduce [http://eom.springer.de/e/e036590.htm#e036590_00m1 (1)] to the integral of a rational function. There are three types of such substitutions.
+
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
* [[수학사연표 (역사)|수학사연표]]
 +
*  
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>메모</h5>
 +
 
 +
* [http://bomber0.byus.net/index.php/2009/02/04/982 ][http://bomber0.byus.net/index.php/2009/02/04/982 ][http://bomber0.byus.net/index.php/2009/02/04/982 ][http://bomber0.byus.net/index.php/2009/02/04/982 ]http://bomber0.byus.net/index.php/2009/02/04/982
 +
* [http://math.kongju.ac.kr/calculus/data/chap5/s3/s3.htm 삼각치환]<br>  <br>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>관련된 항목들</h5>
 +
 
 +
* [[삼각치환]]
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 +
 
 +
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 +
* 발음사전 http://www.forvo.com/search/
 +
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 +
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 +
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 +
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>사전 형태의 자료</h5>
 +
 
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/
 +
* http://www.wolframalpha.com/input/?i=
 +
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 +
** http://www.research.att.com/~njas/sequences/?q=
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>관련논문</h5>
 +
 
 +
* http://www.jstor.org/action/doBasicSearch?Query=
 +
* http://www.ams.org/mathscinet
 +
* http://dx.doi.org/
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>관련도서</h5>
 +
 
 +
*  도서내검색<br>
 +
** http://books.google.com/books?q=
 +
** http://book.daum.net/search/contentSearch.do?query=
 +
*  도서검색<br>
 +
** http://books.google.com/books?q=
 +
** http://book.daum.net/search/mainSearch.do?query=
 +
** http://book.daum.net/search/mainSearch.do?query=
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>관련기사</h5>
 +
 
 +
*  네이버 뉴스 검색 (키워드 수정)<br>
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
 
 +
 
  
 
 
 
 
  
(Any combination of signs may be chosen on the right-hand side in each case.) All the Euler substitutions allow both the original variable of integration  and  to be expressed rationally in terms of the new variable .
+
<h5>블로그</h5>
  
The first two Euler substitutions permit the reduction of [http://eom.springer.de/e/e036590.htm#e036590_00m1 (1)] to the integral of a rational function over any interval on which  takes only real values.
+
*  구글 블로그 검색<br>
 +
** http://blogsearch.google.com/blogsearch?q=
 +
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 +
* [http://math.dongascience.com/ 수학동아]
 +
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 +
* [http://betterexplained.com/ BetterExplained]

2010년 2월 9일 (화) 18:11 판

이 항목의 스프링노트 원문주소

 

 

 

 

 

 

개요

 

  • \(R(x,\sqrt{ax^2+bx+c})\)의 적분
    \(ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}\) 으로 쓴 다음
  • \(ac-b^2\)와 \(a\)의 부호에 따라, 적당히 치환

 

  • \(R(x,\sqrt{ax^2+bx+c})\) 형태의 적분을 유리함수의 적분으로 바꾸는 변수 \(x=x(t)\) 치환
  • \(y^2=ax^2+bx+c\)를 \(t\)에 대한 유리함수로 매개화하는 것이 가장 중요한 아이디어이다. 
  • \(y-y_0 = t(x-x_0)\) passing through a point  \((x_0,y_0)\)

 

 

 

제1오일러치환


 

 


 

제2오일러치환

 


 

 

The third Euler substitution: If , then


 

 

제3오일러치환


 



The second Euler substitution: If the roots  and  of the quadratic polynomial  are real, then


 

 

 

In the case when , that is, when (2) is a hyperbola, the first Euler substitution is obtained by taking \((x_0,y_0)\) as one of the points at infinity defined by the directions of the asymptotes of this hyperbola;

when the roots   and  of the quadratic polynomial \(ax^2+bx+c\) are real, the second Euler substitution is obtained by taking as \((x_0,y_0)\) one of the points  or ;

finally, when , the third Euler substitution is obtained by taking as \((x_0,y_0)\) one of the points where the curve (2) intersects the ordinate axis, that is, one of the points .

 

http://www.integral-table.com/

 

http://books.google.com/books?id=E2IhMXPZMNIC&pg=PR8&lpg=PR8&dq=functions+with+elementary+integral+Analysis+by+Its+History&source=bl&ots=7GRnB0mT8k&sig=jpLHMzhVvPUFDTvIhCYojZWTYNo&hl=ko&ei=VU2HSuu2FpTOsQPMwInbAg&sa=X&oi=book_result&ct=result&resnum=3#v=onepage&q=&f=false

 

 

\(\int \sqrt{x^2+1}\,dx\)

 

http://www.goiit.com/posts/list/integration-euler-s-substitution-354.htm

http://pauli.uni-muenster.de/~munsteg/arnold.html

 

 





 multiply out. Since we can factor the polynomial and one root is 2, we can also use the 3. Euler substitution:  

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그