"오일러 치환"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
47번째 줄: | 47번째 줄: | ||
* <math>c>0</math> 일때, <math>\sqrt{ax^2+bx+c}=xt+\sqrt{c}</math> 로 치환 | * <math>c>0</math> 일때, <math>\sqrt{ax^2+bx+c}=xt+\sqrt{c}</math> 로 치환 | ||
− | * <math>\int x^2\sqrt{1-x^2}\,dx</math>의 예<br><math>\sqrt{1-x^2}=xt+1</math><br><math>x=\frac{2t}{t^2+1}</math><br> <br> | + | * <math>\int x^2\sqrt{1-x^2}\,dx</math>의 예<br><math>\sqrt{1-x^2}=xt+1</math><br><math>x=\frac{2t}{t^2+1}</math><br><math>\int -\frac{8 t^2 \left(-1+t^2\right) \left(1+3 t^2\right)}{\left(1+t^2\right)^5}\,dt</math><br> <br> |
58번째 줄: | 58번째 줄: | ||
* <math>\int\sqrt{x^2-4}\,dx</math>의 예<br><math>\sqrt{x^2-4}=t(x-2)</math><br><math>x=\frac{2t^2+2}{t^2-1}</math><br><math>\int \frac{2t^4-16t^2+32}{8t^3}\,dt</math><br> | * <math>\int\sqrt{x^2-4}\,dx</math>의 예<br><math>\sqrt{x^2-4}=t(x-2)</math><br><math>x=\frac{2t^2+2}{t^2-1}</math><br><math>\int \frac{2t^4-16t^2+32}{8t^3}\,dt</math><br> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
108번째 줄: | 88번째 줄: | ||
<h5>메모</h5> | <h5>메모</h5> | ||
− | * [http://bomber0.byus.net/index.php/2009/02/04/982 ] | + | * [http://bomber0.byus.net/index.php/2009/02/04/982 ]http://bomber0.byus.net/index.php/2009/02/04/982 |
+ | * http://www.goiit.com/posts/list/integration-euler-s-substitution-354.htm<br>[http://pauli.uni-muenster.de/%7Emunsteg/arnold.html http://pauli.uni-muenster.de/~munsteg/arnold.html]<br> | ||
* [http://math.kongju.ac.kr/calculus/data/chap5/s3/s3.htm 삼각치환]<br> <br> | * [http://math.kongju.ac.kr/calculus/data/chap5/s3/s3.htm 삼각치환]<br> <br> | ||
140번째 줄: | 121번째 줄: | ||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://planetmath.org/encyclopedia/EulersSubstitutionsForIntegration.html | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] |
2010년 2월 9일 (화) 18:39 판
이 항목의 스프링노트 원문주소
개요
- \(R(x,\sqrt{ax^2+bx+c})\)의 적분
\(ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}\) 으로 쓴 다음 - \(ac-b^2\)와 \(a\)의 부호에 따라, 적당히 치환
- \(R(x,\sqrt{ax^2+bx+c})\) 형태의 적분을 유리함수의 적분으로 바꾸는 변수 \(x=x(t)\) 치환
- \(y^2=ax^2+bx+c\)를 \(t\)에 대한 유리함수로 매개화하는 것이 가장 중요한 아이디어이다.
- \(y-y_0 = t(x-x_0)\) passing through a point \((x_0,y_0)\)
제1오일러치환
- \(a>0\) 일때, \(\sqrt{ax^2+bx+c}=t-\sqrt{a}x\) 로 치환
- \(\int\sqrt{x^2-4}\,dx\)의 예
\(\sqrt{x^2-4}=t-x\)
\(x=\frac{4+t^2}{2t}\)
\(\int \frac{2t^4-16t^2+32}{8t^3}\,dt\)
제2오일러치환
- \(c>0\) 일때, \(\sqrt{ax^2+bx+c}=xt+\sqrt{c}\) 로 치환
- \(\int x^2\sqrt{1-x^2}\,dx\)의 예
\(\sqrt{1-x^2}=xt+1\)
\(x=\frac{2t}{t^2+1}\)
\(\int -\frac{8 t^2 \left(-1+t^2\right) \left(1+3 t^2\right)}{\left(1+t^2\right)^5}\,dt\)
제3오일러치환
- \(ax^2+bx+c=0\)가 두 실근u,v를 가질때, \(\sqrt{ax^2+bx+c}=t(x-u)\)로 치환
- \(\int\sqrt{x^2-4}\,dx\)의 예
\(\sqrt{x^2-4}=t(x-2)\)
\(x=\frac{2t^2+2}{t^2-1}\)
\(\int \frac{2t^4-16t^2+32}{8t^3}\,dt\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
- [1]http://bomber0.byus.net/index.php/2009/02/04/982
- http://www.goiit.com/posts/list/integration-euler-s-substitution-354.htm
http://pauli.uni-muenster.de/~munsteg/arnold.html - 삼각치환
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://planetmath.org/encyclopedia/EulersSubstitutionsForIntegration.html
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)