|
|
19번째 줄: |
19번째 줄: |
| <h5>원분다항식 목록</h5> | | <h5>원분다항식 목록</h5> |
| | | |
− | * 매쓰매티카 Do[Print["\Phi_", i, "(x)=", Cyclotomic[i, x] // TraditionalForm], {i, 1, 20}]
| + | <math>\begin{array}{l|ll} & $\phi (n) & \phi _n(x) \\ \hline 1 & 1 & -1+x \\ 2 & 1 & 1+x \\ 3 & 2 & 1+x+x^2 \\ 4 & 2 & 1+x^2 \\ 5 & 4 & 1+x+x^2+x^3+x^4 \\ 6 & 2 & 1-x+x^2 \\ 7 & 6 & 1+x+x^2+x^3+x^4+x^5+x^6 \\ 8 & 4 & 1+x^4 \\ 9 & 6 & 1+x^3+x^6 \\ 10 & 4 & 1-x+x^2-x^3+x^4 \\ 11 & 10 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10} \\ 12 & 4 & 1-x^2+x^4 \\ 13 & 12 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12} \\ 14 & 6 & 1-x+x^2-x^3+x^4-x^5+x^6 \\ 15 & 8 & 1-x+x^3-x^4+x^5-x^7+x^8 \\ 16 & 8 & 1+x^8 \\ 17 & 16 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16} \\ 18 & 6 & 1-x^3+x^6 \\ 19 & 18 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}+x^{18} \\ 20 & 8 & 1-x^2+x^4-x^6+x^8 \end{array}</math> |
| | | |
− | <math>\Phi_1(X) = X-1</math>
| + | <br> |
− | | |
− | <math>\Phi_2(X) = X+1</math>
| |
− | | |
− | <math>\Phi_3(X) = X^2 + X + 1</math>
| |
− | | |
− | <math>\Phi_4(x)=x^2+1</math>
| |
− | | |
− | <math>\Phi_5(x)=x^4+x^3+x^2+x+1</math>
| |
− | | |
− | <math>\Phi_6(X) = X^2 - X + 1</math><br><math>\Phi_7(x)=x^6+x^5+x^4+x^3+x^2+x+1</math>
| |
− | | |
− | <math>\Phi_8(x)=x^4+1</math>
| |
− | | |
− | <math>\Phi_9(X) = X^6 + X^3 + 1</math><br><math>\Phi_{10}(x)=x^4-x^3+x^2-x+1</math><br><math>\Phi_{11}(x)=x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1</math><br><math>\Phi_{12}(x)=x^4-x^2+1</math><br> \Phi_13(x)=x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_14(x)=x^6-x^5+x^4-x^3+x^2-x+1
| |
− | | |
− | \Phi_{15}(X) = X^8 - X^7 + X^5 - X^4 + X^3 - X + 1<br> \Phi_16(x)=x^8+1<br> \Phi_17(x)=x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_18(x)=x^6-x^3+1<br> \Phi_19(x)=x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_20(x)=x^8-x^6+x^4-x^2+1<br> \Phi_21(x)=x^12-x^11+x^9-x^8+x^6-x^4+x^3-x+1<br> \Phi_22(x)=x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> \Phi_23(x)=x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_24(x)=x^8-x^4+1<br> \Phi_25(x)=x^20+x^15+x^10+x^5+1<br> \Phi_26(x)=x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> \Phi_27(x)=x^18+x^9+1<br> \Phi_28(x)=x^12-x^10+x^8-x^6+x^4-x^2+1<br> \Phi_29(x)=x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_30(x)=x^8+x^7-x^5-x^4-x^3+x+1<br> \Phi_31(x)=x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_32(x)=x^16+1<br> \Phi_33(x)=x^20-x^19+x^17-x^16+x^14-x^13+x^11-x^10+x^9-x^7+x^6-x^4+x^3-x+1<br> \Phi_34(x)=x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> \Phi_35(x)=x^24-x^23+x^19-x^18+x^17-x^16+x^14-x^13+x^12-x^11+x^10-x^8+x^7-x^6+x^5-x+1<br> \Phi_36(x)=x^12-x^6+1<br> \Phi_37(x)=x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_38(x)=x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> \Phi_39(x)=x^24-x^23+x^21-x^20+x^18-x^17+x^15-x^14+x^12-x^10+x^9-x^7+x^6-x^4+x^3-x+1<br> \Phi_40(x)=x^16-x^12+x^8-x^4+1<br> \Phi_41(x)=x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_42(x)=x^12+x^11-x^9-x^8+x^6-x^4-x^3+x+1<br> \Phi_43(x)=x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_44(x)=x^20-x^18+x^16-x^14+x^12-x^10+x^8-x^6+x^4-x^2+1<br> \Phi_45(x)=x^24-x^21+x^15-x^12+x^9-x^3+1<br> \Phi_46(x)=x^22-x^21+x^20-x^19+x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> \Phi_47(x)=x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_48(x)=x^16-x^8+1<br> \Phi_49(x)=x^42+x^35+x^28+x^21+x^14+x^7+1<br> \Phi_50(x)=x^20-x^15+x^10-x^5+1<br> \Phi_51(x)=x^32-x^31+x^29-x^28+x^26-x^25+x^23-x^22+x^20-x^19+x^17-x^16+x^15-x^13+x^12-x^10+x^9-x^7+x^6-x^4+x^3-x+1<br> \Phi_52(x)=x^24-x^22+x^20-x^18+x^16-x^14+x^12-x^10+x^8-x^6+x^4-x^2+1<br> \Phi_53(x)=x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_54(x)=x^18-x^9+1<br> \Phi_55(x)=x^40-x^39+x^35-x^34+x^30-x^28+x^25-x^23+x^20-x^17+x^15-x^12+x^10-x^6+x^5-x+1<br> \Phi_56(x)=x^24-x^20+x^16-x^12+x^8-x^4+1<br> \Phi_57(x)=x^36-x^35+x^33-x^32+x^30-x^29+x^27-x^26+x^24-x^23+x^21-x^20+x^18-x^16+x^15-x^13+x^12-x^10+x^9-x^7+x^6-x^4+x^3-x+1<br> \Phi_58(x)=x^28-x^27+x^26-x^25+x^24-x^23+x^22-x^21+x^20-x^19+x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> \Phi_59(x)=x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_60(x)=x^16+x^14-x^10-x^8-x^6+x^2+1<br> \Phi_61(x)=x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_62(x)=x^30-x^29+x^28-x^27+x^26-x^25+x^24-x^23+x^22-x^21+x^20-x^19+x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> \Phi_63(x)=x^36-x^33+x^27-x^24+x^18-x^12+x^9-x^3+1<br> \Phi_64(x)=x^32+1<br> \Phi_65(x)=x^48-x^47+x^43-x^42+x^38-x^37+x^35-x^34+x^33-x^32+x^30-x^29+x^28-x^27+x^25-x^24+x^23-x^21+x^20-x^19+x^18-x^16+x^15-x^14+x^13-x^11+x^10-x^6+x^5-x+1<br> \Phi_66(x)=x^20+x^19-x^17-x^16+x^14+x^13-x^11-x^10-x^9+x^7+x^6-x^4-x^3+x+1<br> \Phi_67(x)=x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_68(x)=x^32-x^30+x^28-x^26+x^24-x^22+x^20-x^18+x^16-x^14+x^12-x^10+x^8-x^6+x^4-x^2+1<br> \Phi_69(x)=x^44-x^43+x^41-x^40+x^38-x^37+x^35-x^34+x^32-x^31+x^29-x^28+x^26-x^25+x^23-x^22+x^21-x^19+x^18-x^16+x^15-x^13+x^12-x^10+x^9-x^7+x^6-x^4+x^3-x+1<br> \Phi_70(x)=x^24+x^23-x^19-x^18-x^17-x^16+x^14+x^13+x^12+x^11+x^10-x^8-x^7-x^6-x^5+x+1<br> \Phi_71(x)=x^70+x^69+x^68+x^67+x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_72(x)=x^24-x^12+1<br> \Phi_73(x)=x^72+x^71+x^70+x^69+x^68+x^67+x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_74(x)=x^36-x^35+x^34-x^33+x^32-x^31+x^30-x^29+x^28-x^27+x^26-x^25+x^24-x^23+x^22-x^21+x^20-x^19+x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> \Phi_75(x)=x^40-x^35+x^25-x^20+x^15-x^5+1<br> \Phi_76(x)=x^36-x^34+x^32-x^30+x^28-x^26+x^24-x^22+x^20-x^18+x^16-x^14+x^12-x^10+x^8-x^6+x^4-x^2+1<br> \Phi_77(x)=x^60-x^59+x^53-x^52+x^49-x^48+x^46-x^45+x^42-x^41+x^39-x^37+x^35-x^34+x^32-x^30+x^28-x^26+x^25-x^23+x^21-x^19+x^18-x^15+x^14-x^12+x^11-x^8+x^7-x+1<br> \Phi_78(x)=x^24+x^23-x^21-x^20+x^18+x^17-x^15-x^14+x^12-x^10-x^9+x^7+x^6-x^4-x^3+x+1<br> \Phi_79(x)=x^78+x^77+x^76+x^75+x^74+x^73+x^72+x^71+x^70+x^69+x^68+x^67+x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_80(x)=x^32-x^24+x^16-x^8+1<br> \Phi_81(x)=x^54+x^27+1<br> \Phi_82(x)=x^40-x^39+x^38-x^37+x^36-x^35+x^34-x^33+x^32-x^31+x^30-x^29+x^28-x^27+x^26-x^25+x^24-x^23+x^22-x^21+x^20-x^19+x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> \Phi_83(x)=x^82+x^81+x^80+x^79+x^78+x^77+x^76+x^75+x^74+x^73+x^72+x^71+x^70+x^69+x^68+x^67+x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_84(x)=x^24+x^22-x^18-x^16+x^12-x^8-x^6+x^2+1<br> \Phi_85(x)=x^64-x^63+x^59-x^58+x^54-x^53+x^49-x^48+x^47-x^46+x^44-x^43+x^42-x^41+x^39-x^38+x^37-x^36+x^34-x^33+x^32-x^31+x^30-x^28+x^27-x^26+x^25-x^23+x^22-x^21+x^20-x^18+x^17-x^16+x^15-x^11+x^10-x^6+x^5-x+1<br> \Phi_86(x)=x^42-x^41+x^40-x^39+x^38-x^37+x^36-x^35+x^34-x^33+x^32-x^31+x^30-x^29+x^28-x^27+x^26-x^25+x^24-x^23+x^22-x^21+x^20-x^19+x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> \Phi_87(x)=x^56-x^55+x^53-x^52+x^50-x^49+x^47-x^46+x^44-x^43+x^41-x^40+x^38-x^37+x^35-x^34+x^32-x^31+x^29-x^28+x^27-x^25+x^24-x^22+x^21-x^19+x^18-x^16+x^15-x^13+x^12-x^10+x^9-x^7+x^6-x^4+x^3-x+1<br> \Phi_88(x)=x^40-x^36+x^32-x^28+x^24-x^20+x^16-x^12+x^8-x^4+1<br> \Phi_89(x)=x^88+x^87+x^86+x^85+x^84+x^83+x^82+x^81+x^80+x^79+x^78+x^77+x^76+x^75+x^74+x^73+x^72+x^71+x^70+x^69+x^68+x^67+x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_90(x)=x^24+x^21-x^15-x^12-x^9+x^3+1<br> \Phi_91(x)=x^72-x^71+x^65-x^64+x^59-x^57+x^52-x^50+x^46-x^43+x^39-x^36+x^33-x^29+x^26-x^22+x^20-x^15+x^13-x^8+x^7-x+1<br> \Phi_92(x)=x^44-x^42+x^40-x^38+x^36-x^34+x^32-x^30+x^28-x^26+x^24-x^22+x^20-x^18+x^16-x^14+x^12-x^10+x^8-x^6+x^4-x^2+1<br> \Phi_93(x)=x^60-x^59+x^57-x^56+x^54-x^53+x^51-x^50+x^48-x^47+x^45-x^44+x^42-x^41+x^39-x^38+x^36-x^35+x^33-x^32+x^30-x^28+x^27-x^25+x^24-x^22+x^21-x^19+x^18-x^16+x^15-x^13+x^12-x^10+x^9-x^7+x^6-x^4+x^3-x+1<br> \Phi_94(x)=x^46-x^45+x^44-x^43+x^42-x^41+x^40-x^39+x^38-x^37+x^36-x^35+x^34-x^33+x^32-x^31+x^30-x^29+x^28-x^27+x^26-x^25+x^24-x^23+x^22-x^21+x^20-x^19+x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> \Phi_95(x)=x^72-x^71+x^67-x^66+x^62-x^61+x^57-x^56+x^53-x^51+x^48-x^46+x^43-x^41+x^38-x^36+x^34-x^31+x^29-x^26+x^24-x^21+x^19-x^16+x^15-x^11+x^10-x^6+x^5-x+1<br> \Phi_96(x)=x^32-x^16+1<br> \Phi_97(x)=x^96+x^95+x^94+x^93+x^92+x^91+x^90+x^89+x^88+x^87+x^86+x^85+x^84+x^83+x^82+x^81+x^80+x^79+x^78+x^77+x^76+x^75+x^74+x^73+x^72+x^71+x^70+x^69+x^68+x^67+x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> \Phi_98(x)=x^42-x^35+x^28-x^21+x^14-x^7+1<br> \Phi_99(x)=x^60-x^57+x^51-x^48+x^42-x^39+x^33-x^30+x^27-x^21+x^18-x^12+x^9-x^3+1<br> \Phi_100(x)=x^40-x^30+x^20-x^10+1
| |
− | | |
− |
| |
− | | |
− |
| |
| | | |
| <h5>역사</h5> | | <h5>역사</h5> |
2011년 7월 3일 (일) 12:45 판
이 항목의 스프링노트 원문주소
정의
- \(\Phi_n(X) = \prod_\omega (X-\omega)\)
- 여기서 \(\omega\)는 primitive n-th root of unity (단위근)
- 차수는 오일러의 totient 함수 를 사용하여 \(\varphi(n)\) 로 표현됨
원분다항식 목록
\(\begin{array}{l|ll} & $\phi (n) & \phi _n(x) \\ \hline 1 & 1 & -1+x \\ 2 & 1 & 1+x \\ 3 & 2 & 1+x+x^2 \\ 4 & 2 & 1+x^2 \\ 5 & 4 & 1+x+x^2+x^3+x^4 \\ 6 & 2 & 1-x+x^2 \\ 7 & 6 & 1+x+x^2+x^3+x^4+x^5+x^6 \\ 8 & 4 & 1+x^4 \\ 9 & 6 & 1+x^3+x^6 \\ 10 & 4 & 1-x+x^2-x^3+x^4 \\ 11 & 10 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10} \\ 12 & 4 & 1-x^2+x^4 \\ 13 & 12 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12} \\ 14 & 6 & 1-x+x^2-x^3+x^4-x^5+x^6 \\ 15 & 8 & 1-x+x^3-x^4+x^5-x^7+x^8 \\ 16 & 8 & 1+x^8 \\ 17 & 16 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16} \\ 18 & 6 & 1-x^3+x^6 \\ 19 & 18 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}+x^{18} \\ 20 & 8 & 1-x^2+x^4-x^6+x^8 \end{array}\)
역사
관련된 다른 주제들
관련도서 및 추천도서
사전형태의 참고자료