"이계 선형 미분방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
113번째 줄: 113번째 줄:
 
<h5>매스매티카 파일 및 계산 리소스</h5>
 
<h5>매스매티카 파일 및 계산 리소스</h5>
  
*  
+
* https://docs.google.com/file/d/0B8XXo8Tve1cxNkloSUtXMkszZ1U/edit
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* http://functions.wolfram.com/

2012년 8월 26일 (일) 05:40 판

이 항목의 수학노트 원문주소

 

 

개요
  • 다음 형태로 주어지는 미분방정식
    \(\frac{d^2y}{dx^2}+p(x)\frac{dy}{dx}+q(x)y=g(x)\)

 

 

 

 

론스키안(Wronskian)
  • 론스키안(Wronskian)은 미분방정식
  • \(\frac{d^2y}{dx^2}+p(x)\frac{dy}{dx}+q(x)y=0\)
    의 일차독립인 두 해, \(y_1,y_2\)에 대하여 다음과 같이 정의된다
    \(\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}\)
  • 정리
    \(\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}=\,c e^{-\int{p}\,dz}\)

(증명)

\(W=\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}=\,y_1y_2'-y_1'y_2\)

\(W'=y_1'y_2'+y_1y_2''-y_1''y_2-y_1'y_2'=y_1(-py_2'-qy_2)-(-py_1'-qy_1)y_2=-p(y_1y_2'-y_1'y_2)=-pW\)

따라서 적당한 상수 c에 대하여, \(W=\,c e^{-\int{p}\,dz}\) ■

 

 

미분방정식의 변환 (Q-form)
  • \(y''+p(x)y'+q(x)y=0\) 의 가운데 \( p(x)y\) 항을 적당한 변환에 의해 없앨 수 있다

\(\sigma(x)=e^{-\frac{1}{2} \int p(x) \, dx}\) 로 두자 .

\(y(x)=\sigma(x)u(x)\) 가 미분방정식의 해이면,

\(u''(x)-\frac{1}{4} u(x) \left(2 p'(x)+p(x)^2-4 q(x)\right)=0\) 가 성립한다

 

특별히 이를 초기하 미분방정식(Hypergeometric differential equations) 에 응용할 경우,

\( p(z)=\frac{c-z (a+b+1)}{(1-z) z}\), \(q(z)=-\frac{a b}{(1-z) z}\) 로 두면,

\(q(z)-\frac{1}{4} p(z)^2-\frac{p'(z)}{2}=\frac{1}{4}\left(\frac{1-\alpha ^2}{z^2}+\frac{1-\gamma ^2}{(z-1)^2}+\frac{\alpha ^2+\gamma ^2-\beta ^2-1}{z(z-1)}\right)\)  을 얻는다.

여기서 \(\alpha =1-c,\beta =a-b,\gamma =-a-b+c\).

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서