"자코비 다항식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
16번째 줄: 16번째 줄:
  
 
* [[초기하급수(Hypergeometric series)]]를 통해 정의된다<br><math>P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!} \,_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\frac{1-z}{2}\right)</math><br>
 
* [[초기하급수(Hypergeometric series)]]를 통해 정의된다<br><math>P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!} \,_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\frac{1-z}{2}\right)</math><br>
*  
+
* 다항식표현<br><math>P_n^{(\alpha,\beta)} (z) =  \frac{\Gamma (\alpha+n+1)}{n!\Gamma (\alpha+\beta+n+1)} \sum_{m=0}^n {n\choose m} \frac{\Gamma (\alpha + \beta + n + m + 1)}{\Gamma (\alpha + m + 1)} \left(\frac{z-1}{2}\right)^m</math><br>  <br>
  
 
 
 
 
 +
 +
<h5>직교성</h5>
 +
 +
*  weight함수와 구간<br><math>w(x) = (1-x)^{\alpha} (1+x)^{\beta}</math><br><math>[-1,1]</math><br>
 +
* <math>m\neq n</math> 일 때<br><math>\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta}  P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= 0</math><br>
 +
* <math>m=n</math> 일 때<br><math>\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta}  P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}</math><br>
  
 
 
 
 
  
<h5>직교성</h5>
+
 
 +
 
 +
<h5>3항 점화식</h5>
  
 
 
 
 
  
<math>\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta}  P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}</math>
+
 
  
 
 
 
 
33번째 줄: 41번째 줄:
  
 
*  자코비 다항식은 다음을 만족시킨다<br><math>(1-x^2)y'' + ( \beta-\alpha - (\alpha + \beta + 2)x )y'+ n(n+\alpha+\beta+1) y = 0</math><br>
 
*  자코비 다항식은 다음을 만족시킨다<br><math>(1-x^2)y'' + ( \beta-\alpha - (\alpha + \beta + 2)x )y'+ n(n+\alpha+\beta+1) y = 0</math><br>
 +
 +
 
 +
 +
 
 +
 +
<h5>목록</h5>
 +
 +
1<br> 1/2 (a-b+(2+a+b) z)<br> 1/2 (1+a) (2+a)+1/2 (2+a) (3+a+b) (-1+z)+1/8 (3+a+b) (4+a+b) (-1+z)^2<br> 1/6 (1+a) (2+a) (3+a)+1/4 (2+a) (3+a) (4+a+b) (-1+z)+1/8 (3+a) (4+a+b) (5+a+b) (-1+z)^2+1/48 (4+a+b) (5+a+b) (6+a+b) (-1+z)^3
  
 
 
 
 

2010년 5월 2일 (일) 09:03 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 직교다항식

 

 

정의
  • 초기하급수(Hypergeometric series)를 통해 정의된다
    \(P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!} \,_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\frac{1-z}{2}\right)\)
  • 다항식표현
    \(P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+n+1)}{n!\Gamma (\alpha+\beta+n+1)} \sum_{m=0}^n {n\choose m} \frac{\Gamma (\alpha + \beta + n + m + 1)}{\Gamma (\alpha + m + 1)} \left(\frac{z-1}{2}\right)^m\)
     

 

직교성
  • weight함수와 구간
    \(w(x) = (1-x)^{\alpha} (1+x)^{\beta}\)
    \([-1,1]\)
  • \(m\neq n\) 일 때
    \(\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= 0\)
  • \(m=n\) 일 때
    \(\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}\)

 

 

3항 점화식

 

 

 

미분방정식
  • 자코비 다항식은 다음을 만족시킨다
    \((1-x^2)y'' + ( \beta-\alpha - (\alpha + \beta + 2)x )y'+ n(n+\alpha+\beta+1) y = 0\)

 

 

목록

1
1/2 (a-b+(2+a+b) z)
1/2 (1+a) (2+a)+1/2 (2+a) (3+a+b) (-1+z)+1/8 (3+a+b) (4+a+b) (-1+z)^2
1/6 (1+a) (2+a) (3+a)+1/4 (2+a) (3+a) (4+a+b) (-1+z)+1/8 (3+a) (4+a+b) (5+a+b) (-1+z)^2+1/48 (4+a+b) (5+a+b) (6+a+b) (-1+z)^3

 

 

재미있는 사실

 

 

 

역 사

 

 

 

메 모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관 련논문

 

 

관련도서

 

 

관 련기사

 

 

블 로그