"자코비의 네 제곱수 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
32번째 줄: 32번째 줄:
 
 
 
 
  
* <math>r_4(1)=8</math><br><math>(\pm1)^2+0^2+0^2+0^2=1</math>이므로 <br><math>8\times {4\choose 1}=32</math><br>
+
* <math>r_4(1)=8</math><br><math>(\pm1)^2+0^2+0^2+0^2=1</math>이므로 <br><math>2\times {4\choose 1}=8</math><br>
 
* <math>r_4(2)=24</math><br><math>(\pm1)^2+(\pm1)^2+0^2+0^2=2</math><br> ... 으로부터<br><math>4\times {4\choose 2}=24</math><br>
 
* <math>r_4(2)=24</math><br><math>(\pm1)^2+(\pm1)^2+0^2+0^2=2</math><br> ... 으로부터<br><math>4\times {4\choose 2}=24</math><br>
 
* <math>r_4(3)=32</math><br><math>(\pm1)^2+(\pm1)^2+(\pm1)^2+0^2=3</math><br>  <br> ... 으로부터<br><math>8\times {4\choose 1}=32</math><br>
 
* <math>r_4(3)=32</math><br><math>(\pm1)^2+(\pm1)^2+(\pm1)^2+0^2=3</math><br>  <br> ... 으로부터<br><math>8\times {4\choose 1}=32</math><br>
70번째 줄: 70번째 줄:
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
  
 
+
* [[아이젠슈타인 급수(Eisenstein series)]]<br>
  
 
 
 
 

2009년 11월 5일 (목) 12:12 판

이 항목의 스프링노트 원문주소

 

 

간단한 소개

 

  • 자코비 세타함수
    [[자코비 세타함수|]]\(\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}\), \(q=e^{2\pi i \tau}\)
  • \(x=e^{\pi i \tau}\) 로 두면,
    \(\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}=1+2\sum_{n=1}^\infty x^{n^2}\)
    \(\theta^4(x)=(\sum_{n=-\infty}^\infty x^{n^2})^4=(1+2\sum_{n=1}^\infty x^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)x^n\)
    여기서 \(r_4(n)\) 는 \(x_1^2+x_2^2+x_3^2+x_4^2=n\)의 정수해 \((x_1,x_2,x_3,x_4)\)의 개수, 즉 자연수 \(n\)을 네 정수의 제곱의 합으로 쓰는 방법의 수

 

 

정리

 

(정리) 자코비의 네제곱수 정리

\(r_4(n)=8\sum_{m|n,4\nmid m}m\)

 

 

 

  • \(r_4(1)=8\)
    \((\pm1)^2+0^2+0^2+0^2=1\)이므로 
    \(2\times {4\choose 1}=8\)
  • \(r_4(2)=24\)
    \((\pm1)^2+(\pm1)^2+0^2+0^2=2\)
    ... 으로부터
    \(4\times {4\choose 2}=24\)
  • \(r_4(3)=32\)
    \((\pm1)^2+(\pm1)^2+(\pm1)^2+0^2=3\)
     
    ... 으로부터
    \(8\times {4\choose 1}=32\)

 

  • \(r_4(4)=24\)
    \((\pm1)^2+(\pm1)^2+(\pm1)^2+(\pm1)^2=(\pm2)^2+0^2+0^2+0^2=4\)
    ... 으로부터
    \(16+2 \times {4\choose 1}=24\)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그