"합동수 문제 (congruent number problem)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
33번째 줄: 33번째 줄:
 
* 따라서 세 변의 길이가 <math>a,b,c</math>이고 그 넓이가 <math>n</math>인 직각삼각형이 있으면, 타원곡선  <math>y^2=x^3-n^2x</math>의 유리해를 얻는다.
 
* 따라서 세 변의 길이가 <math>a,b,c</math>이고 그 넓이가 <math>n</math>인 직각삼각형이 있으면, 타원곡선  <math>y^2=x^3-n^2x</math>의 유리해를 얻는다.
 
*  그러면 역으로 타원곡선  <math>y^2=x^3-n^2x</math>의 유리해가 있을때, 이러한 조건을 만족시키는 직각삼각형을 찾을 수 있을까?<br>
 
*  그러면 역으로 타원곡선  <math>y^2=x^3-n^2x</math>의 유리해가 있을때, 이러한 조건을 만족시키는 직각삼각형을 찾을 수 있을까?<br>
** 일반적으로는 그렇지 않음.
+
** 일반적으로는 그렇지
 
** 그러나 <math>x</math> 가 어떤 유리수의 제곱으로 주어지고, 그 분모가 짝수라면, 조건을 만족시키는 직각삼각형을 찾을 수 있다.
 
** 그러나 <math>x</math> 가 어떤 유리수의 제곱으로 주어지고, 그 분모가 짝수라면, 조건을 만족시키는 직각삼각형을 찾을 수 있다.
  
101번째 줄: 101번째 줄:
 
<h5>관련논문</h5>
 
<h5>관련논문</h5>
  
* A classical diophantine problem and modular forms. Invent. Math.72, 323–334 (1983)
+
* [http://www.springerlink.com/content/t759717058h50002/ Mock heegner points and congruent numbers]<br>
 +
** Paul Monsky, Mathematische Zeitschrift, Volume 204, Number 1 / 1990년 12월
 +
* [http://dx.doi.org/10.1007/BF01389327 A classical diophantine problem and modular forms]<br>
 +
** Tunnell, J.B., Invent. Math.72, 323–334 (1983)
 
* [http://www.jstor.org/stable/2320381 The Congruent Number Problem]<br>
 
* [http://www.jstor.org/stable/2320381 The Congruent Number Problem]<br>
 
** Ronald Alter, The American Mathematical Monthly, Vol. 87, No. 1 (Jan., 1980), pp. 43-45
 
** Ronald Alter, The American Mathematical Monthly, Vol. 87, No. 1 (Jan., 1980), pp. 43-45
112번째 줄: 115번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
  
Leonard Eugene Dickson's book History of the Theory of Numbers Volume II (ISBN 0-8218-1935-6) Chapter XVI<br> 도서내검색<br>
+
 <br> History of the Theory of Numbers Volume II<br>
 +
**  Leonard Eugene Dickson<br>
 +
**  Chapter XVI<br>
 +
도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=

2009년 10월 13일 (화) 20:35 판

이 항목의 스프링노트 원문주소
  •  

 

간단한 소개
  • 자연수 중에서 세변이 모두 유리수 길이를 갖는 직각삼각형의 넓이로 나타날 수 있는 수를 congruent number라 함

 

 

타원곡선과의 관계
  • 직각삼각형의 세 변의 길이가 \(a,b,c\)로 주어졌다고 가정하고 그 넓이가 \(n\) 이라 하자.

\(a^2 + b^2 &=& c^2\\ \frac{ab}{2} &=& n\)

다음 방정식이 만족됨을 알 수 있다.

\((\frac{a^2-b^2}{4})^2=(\frac{c}{2})^4-n^2\)

\(u=\frac{c}{2}\), \(v=\frac{a^2-b^2}{4}\) 로 두자.

디오판투스 방정식 \(u^4-n^2=v^2\) 가 유리해를 가짐을 알 수 있다.

\(u^4-n^2=v^2\)에서 \(u^6-n^2u^2=u^2v^2\) 를 얻은 뒤, \(x=u^2\), \(y=uv\) 로 두면, 다음 타원곡선의 방정식을 얻는다.

\(y^2=x^3-n^2x\)

  • 따라서 세 변의 길이가 \(a,b,c\)이고 그 넓이가 \(n\)인 직각삼각형이 있으면, 타원곡선  \(y^2=x^3-n^2x\)의 유리해를 얻는다.
  • 그러면 역으로 타원곡선  \(y^2=x^3-n^2x\)의 유리해가 있을때, 이러한 조건을 만족시키는 직각삼각형을 찾을 수 있을까?
    • 일반적으로는 그렇지 않
    • 그러나 \(x\) 가 어떤 유리수의 제곱으로 주어지고, 그 분모가 짝수라면, 조건을 만족시키는 직각삼각형을 찾을 수 있다.

 

(정리)

자연수 \(n\) 은 congruent number 이다 \(\iff\) 타원곡선 \(y^2=x^3-n^2x\) 이 \(y\neq0\)인 유리해를 갖는다.

 

 

n=1 의 경우
  • 타원곡선 \(y^2=x^3-x\)의 유리수해는 다음과 같다
    \(E(\mathbb Q)=\{(\infty,\infty), (0,0),(1,0),(-1,0)\} \)
  • 따라서 n=1은 congruent number 가 아니다

 

 

재미있는 사실

 

 

역사

 

 

관련된 항목들

 

 

수학용어번역

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그