"정다각형의 작도"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
+ | <h5 style="line-height: 3.42em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.16em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | ||
+ | |||
+ | * [[#]] | ||
+ | |||
+ | |||
+ | |||
<h5>간단한 소개</h5> | <h5>간단한 소개</h5> | ||
112번째 줄: | 118번째 줄: | ||
** 정경훈, 네이버 오늘의 과학, 2009-9-29 | ** 정경훈, 네이버 오늘의 과학, 2009-9-29 | ||
* [http://navercast.naver.com/science/math/935 정오각형 작도]<br> | * [http://navercast.naver.com/science/math/935 정오각형 작도]<br> | ||
− | ** 정경훈, 네이버 오늘의 과학, 2009-9- | + | ** 정경훈, 네이버 오늘의 과학, 2009-9-1 |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
** [http://blogsearch.google.com/blogsearch?q=%EC%A0%95%EB%8B%A4%EA%B0%81%ED%98%95%EC%9E%91%EB%8F%84 http://blogsearch.google.com/blogsearch?q=정다각형작도] | ** [http://blogsearch.google.com/blogsearch?q=%EC%A0%95%EB%8B%A4%EA%B0%81%ED%98%95%EC%9E%91%EB%8F%84 http://blogsearch.google.com/blogsearch?q=정다각형작도] |
2009년 11월 28일 (토) 18:29 판
이 항목의 스프링노트 원문주소
간단한 소개
- 정n각형이 자와 컴파스로 작도가능 \(\iff\)\(n=2^k p_1 p_2 \cdots p_r\) (k ,r은 0이상의 정수, \(p_1, p_2, \cdots, p_r\) 은 서로 다른 페르마소수)
- 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, ... (Sloane's A003401)
- 페르마소수란 \(2^{2^m}+1\) 형태의 소수
- 3,5,17,257, 65537 다섯 가지만 알려져 있음.
- 정7각형은 작도가 불가능함.
- \(\cos {\frac{2\pi}{n}}\) 또는 \(\sin {\frac{2\pi}{n}}\) 의 값을, 유리수에서 시작하여, 사칙연산과 제곱근을 통해 표현할 수 있는가의 문제
- \(\cos {\frac{2\pi}{3}} = -\frac{1}{2}\)
- \(\cos {\frac{2\pi}{5}} = \frac{-1+\sqrt{5}}{4}\)
- \(16\cos{2\pi\over17} = -1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ 2\sqrt{17+3\sqrt{17}-\sqrt{34-2\sqrt{17}}-2\sqrt{34+2\sqrt{17}}} \)
- 정오각형 와 가우스와 정17각형의 작도 항목을 참조.
재미있는 사실
역사
관련된 다른 주제들
- 페르마소수
- 오일러의 totient 함수
- 가우스와 정17각형의 작도
- 그리스 3대 작도 불가능문제
- 정오각형
- 복소수와 정다각형
- Lemniscate
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Constructible_polygon
- http://mathworld.wolfram.com/ConstructiblePolygon.html
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
관련논문
- Geometry and Number Theory on Clovers
- David A. Cox and Jerry Shurman
관련도서 및 추천도서
- Introduction to Cyclotomic Fields
- Lawrence C. Washington
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)
블로그
- 정다각형의 작도
- 정경훈, 네이버 오늘의 과학, 2009-9-29
- 정오각형 작도
- 정경훈, 네이버 오늘의 과학, 2009-9-1
- 구글 블로그 검색
- 네이버 오늘의과학
- 수학동아
- Mathematical Moments from the AMS