"초기하 미분방정식(Hypergeometric differential equations)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지에 Schwarz_functions_and_hypergeometric_differential_equation.pdf 파일을 등록하셨습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">간단한 소개</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">간단한 소개</h5> | ||
− | |||
− | |||
* 미분방정식<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br> | * 미분방정식<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br> | ||
26번째 줄: | 24번째 줄: | ||
* [[초기하급수(Hypergeometric series)|초기하급수(Hypergeometric series)와 q-초기하급수]]<br> | * [[초기하급수(Hypergeometric series)|초기하급수(Hypergeometric series)와 q-초기하급수]]<br> | ||
+ | * [[슈바르츠-크리스토펠 사상(Schwarz-Christoffel mappings)|Schwarz-Christoffel mappings]]<br> | ||
60번째 줄: | 59번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5> | ||
− | * | + | * [http://www.amazon.com/Conformal-Mapping-Zeev-Nehari/dp/048661137X Conformal Mapping]<br> |
+ | ** Zeev Nehari, Dover Publications, 1982-1 | ||
+ | ** [[1950524/attachments/2057891|Schwarz_functions_and_hypergeometric_differential_equation.pdf]] | ||
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= |
2009년 9월 4일 (금) 14:29 판
간단한 소개
- 미분방정식
\(z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0\)
재미있는 사실
역사
관련된 다른 주제들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/hypergeometric_differential_equation
- http://en.wikipedia.org/wiki/Frobenius_solution_to_the_hypergeometric_equation
- http://www.wolframalpha.com/input/?i=
관련논문
- On the Kummer Solutions of the Hypergeometric Equation
- Reese T. Prosser
- The American Mathematical Monthly, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543
관련도서 및 추천도서
- Conformal Mapping
- Zeev Nehari, Dover Publications, 1982-1
- Schwarz_functions_and_hypergeometric_differential_equation.pdf
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)