"측지선"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
17번째 줄: 17번째 줄:
 
<h5>곡면의 측지선</h5>
 
<h5>곡면의 측지선</h5>
  
*  곡선 (<math>(x(t),y(t))</math> 가 다음의 미분방정식을 만족해야 한다<br><math>x''(t)+\Gamma _{1,1}{}^1 x'(t)^2+\Gamma _{1,2}{}^1 x'(t) y'(t)+\Gamma _{2,1}{}^1 x'(t) y'(t)+\Gamma _{2,2}{}^1 y'(t)^2=0</math><br>  <br>
+
*  곡선 (<math>(x(t),y(t))</math> 가 다음의 미분방정식을 만족해야 한다<br><math>x''(t)+\Gamma _{1,1}{}^1 x'(t)^2+\Gamma _{1,2}{}^1 x'(t) y'(t)+\Gamma _{2,1}{}^1 x'(t) y'(t)+\Gamma _{2,2}{}^1 y'(t)^2=0</math><br><math>y''(t)+\Gamma _{1,1}{}^2 x'(t)^2+\Gamma _{1,2}{}^2 x'(t) y'(t)+\Gamma _{2,1}{}^2 x'(t) y'(t)+\Gamma _{2,2}{}^2 y'(t)^2=0</math><br>
  
 
 
 
 

2012년 8월 26일 (일) 05:01 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 다양체 M의 coordinate chart 에서 \(\alpha(t)=(\alpha_1(t),\alpha_2(t),\cdots)\) 로 표현되는 곡선이 측지선이 될 조건은 크리스토펠 기호를 사용하여 다음 미분방정식으로 쓸 수 있다
    \(\frac{d^2\alpha_k }{dt^2} + \sum_{i,j}\Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0\)
    또는
    \(\ddot{\alpha_k } + \sum_{i,j}\Gamma^{k}_{~i j }\dot{\alpha_i}\dot{\alpha_j }= 0\)

 

 

곡면의 측지선
  • 곡선 (\((x(t),y(t))\) 가 다음의 미분방정식을 만족해야 한다
    \(x''(t)+\Gamma _{1,1}{}^1 x'(t)^2+\Gamma _{1,2}{}^1 x'(t) y'(t)+\Gamma _{2,1}{}^1 x'(t) y'(t)+\Gamma _{2,2}{}^1 y'(t)^2=0\)
    \(y''(t)+\Gamma _{1,1}{}^2 x'(t)^2+\Gamma _{1,2}{}^2 x'(t) y'(t)+\Gamma _{2,1}{}^2 x'(t) y'(t)+\Gamma _{2,2}{}^2 y'(t)^2=0\)

 

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그