"클리포드 대수와 스피너"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>개요</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>클리포드 대수</h5> | ||
+ | |||
+ | * 이차형식이 주어진 벡터공간 <math>(V,Q)</math> | ||
+ | * Q : non-degenerate quadratic form, defines a symmetric bilinear form <math>\langle x,y \rangle</math> | ||
+ | * 클리포드 대수: associative algebra generated by vectors in V with relations<br> | ||
+ | ** <math>v^2=Q(v)</math> | ||
+ | ** <math>vw+wv=2\langle w,v\rangle</math> | ||
+ | * exterior algebra 의 양자화로 이해하기도 한다 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>스피너</h5> | ||
+ | |||
+ | * 클리포드 대수의 벡터공간 <math>W</math> 에서의 표현을 생각하자 | ||
+ | * W의 원소를 스피너라 부른다 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>파울리 스피너</h5> | ||
+ | |||
+ | * 8-dimensional real algebra | ||
+ | * isomorphic to C(E_{3}) Clifford algebra of the Euclidean space E_{3} | ||
+ | |||
+ | * http://en.wikipedia.org/wiki/Spinors_in_three_dimensions | ||
+ | * spinor = a vector in two-dimensional space over complex number field | ||
+ | * Hermitian dot product is given on the vector space | ||
+ | * the space of spinors is a projective representation of the orthogonal group. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>역사</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | * [[수학사연표 (역사)|수학사연표]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>메모</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * Math Overflow http://mathoverflow.net/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 항목들</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> | ||
+ | |||
+ | * 단어사전<br> | ||
+ | ** http://translate.google.com/#en|ko| | ||
+ | ** http://ko.wiktionary.org/wiki/ | ||
+ | * 발음사전 http://www.forvo.com/search/ | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
+ | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
+ | * [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | ||
+ | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
+ | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>사전 형태의 자료</h5> | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics] | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | * [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>리뷰논문, 에세이, 강의노트</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련논문</h5> | ||
+ | |||
+ | * http://www.jstor.org/action/doBasicSearch?Query= | ||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련도서</h5> | ||
+ | |||
+ | * 도서내검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 3월 5일 (월) 09:41 판
이 항목의 수학노트 원문주소
개요
클리포드 대수
- 이차형식이 주어진 벡터공간 \((V,Q)\)
- Q : non-degenerate quadratic form, defines a symmetric bilinear form \(\langle x,y \rangle\)
- 클리포드 대수: associative algebra generated by vectors in V with relations
- \(v^2=Q(v)\)
- \(vw+wv=2\langle w,v\rangle\)
- exterior algebra 의 양자화로 이해하기도 한다
스피너
- 클리포드 대수의 벡터공간 \(W\) 에서의 표현을 생각하자
- W의 원소를 스피너라 부른다
파울리 스피너
- 8-dimensional real algebra
- isomorphic to C(E_{3}) Clifford algebra of the Euclidean space E_{3}
- http://en.wikipedia.org/wiki/Spinors_in_three_dimensions
- spinor = a vector in two-dimensional space over complex number field
- Hermitian dot product is given on the vector space
- the space of spinors is a projective representation of the orthogonal group.
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문