"타원곡선"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지에 MSP1975197gdf732cih44i50000361d01gd578fhc4a.gif 파일을 등록하셨습니다.) |
|||
10번째 줄: | 10번째 줄: | ||
* [[아이젠슈타인 급수(Eisenstein series)]]<br> | * [[아이젠슈타인 급수(Eisenstein series)]]<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>군의 구조</h5> | ||
+ | |||
+ | * chord-tangent method | ||
22번째 줄: | 30번째 줄: | ||
<math>2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots</math> | <math>2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots</math> | ||
+ | |||
+ | [/pages/2061314/attachments/2299029 MSP1975197gdf732cih44i50000361d01gd578fhc4a.gif] | ||
+ | |||
+ | |||
2009년 10월 12일 (월) 18:03 판
간단한 소개
\(y^2=4x^3-g_2(\tau)x-g_3\)
\(g_2(\tau) = 60G_4=60\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{4}}\)
\(g_3(\tau) = 140G_6=140\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{6}}\)
군의 구조
- chord-tangent method
예
\(y^2=x^3-x\)
\(y^2=4x^3-4x\)
\(2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots\)
[/pages/2061314/attachments/2299029 MSP1975197gdf732cih44i50000361d01gd578fhc4a.gif]
재미있는 사실
역사
관련된 다른 주제들
- 타원적분
- lemniscate 곡선의 길이와 타원적분
- 정수계수 이변수 이차형식(binary integral quadratic forms)
- j-invariant
- 아이젠슈타인 급수(Eisenstein series)
- 베타적분
- 사각 피라미드 퍼즐
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/타원곡선
- http://en.wikipedia.org/wiki/elliptic_curve
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=y^2=x^3-x
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
관련논문
- Conics - a Poor Man's Elliptic Curves
- Franz Lemmermeyer, arXiv:math/0311306v1
- Elliptic Curves
- John Stillwell, The American Mathematical Monthly, Vol. 102, No. 9 (Nov., 1995), pp. 831-837
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)