"타원곡선"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
26번째 줄: 26번째 줄:
  
 
<math>y^2=x^3-x</math>
 
<math>y^2=x^3-x</math>
 +
 +
[/pages/2061314/attachments/2299029 MSP1975197gdf732cih44i50000361d01gd578fhc4a.gif]
  
 
<math>y^2=4x^3-4x</math>
 
<math>y^2=4x^3-4x</math>
31번째 줄: 33번째 줄:
 
<math>2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots</math>
 
<math>2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots</math>
  
[/pages/2061314/attachments/2299029 MSP1975197gdf732cih44i50000361d01gd578fhc4a.gif]
+
 
  
 
 
 
 
66번째 줄: 68번째 줄:
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 +
 +
 
  
 
 
 
 
96번째 줄: 100번째 줄:
  
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 
+
 
 +
* [http://books.google.com/books?hl=ko&lr=&id=Z90CA_EUCCkC&oi=fnd&pg=PR5&dq=%22Silverman%22+%22The+arithmetic+of+elliptic+curves%22+&ots=3K5hjqYj17&sig=zDmIXkvS7EaFwu4bnEbxmWUpFys#v=onepage&q=&f=false The Arithmetic of Elliptic Curves]<br>
 +
**  Silverman, Joseph H. (1986), Graduate Texts in Mathematics, 106, Springer-Verlag<br>
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=

2009년 10월 12일 (월) 18:09 판

간단한 소개

 

\(y^2=4x^3-g_2(\tau)x-g_3\)

\(g_2(\tau) = 60G_4=60\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{4}}\)

\(g_3(\tau) = 140G_6=140\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{6}}\)

 

 

군의 구조
  • chord-tangent method

 

 

\(y^2=x^3-x\)

[/pages/2061314/attachments/2299029 MSP1975197gdf732cih44i50000361d01gd578fhc4a.gif]

\(y^2=4x^3-4x\)

\(2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots\)

 

 

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들
수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

 

관련기사

 

 

블로그