"타원곡선"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
26번째 줄: | 26번째 줄: | ||
<math>y^2=x^3-x</math> | <math>y^2=x^3-x</math> | ||
+ | |||
+ | [/pages/2061314/attachments/2299029 MSP1975197gdf732cih44i50000361d01gd578fhc4a.gif] | ||
<math>y^2=4x^3-4x</math> | <math>y^2=4x^3-4x</math> | ||
31번째 줄: | 33번째 줄: | ||
<math>2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots</math> | <math>2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots</math> | ||
− | + | ||
66번째 줄: | 68번째 줄: | ||
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
+ | |||
+ | |||
96번째 줄: | 100번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5> | ||
− | + | ||
+ | * [http://books.google.com/books?hl=ko&lr=&id=Z90CA_EUCCkC&oi=fnd&pg=PR5&dq=%22Silverman%22+%22The+arithmetic+of+elliptic+curves%22+&ots=3K5hjqYj17&sig=zDmIXkvS7EaFwu4bnEbxmWUpFys#v=onepage&q=&f=false The Arithmetic of Elliptic Curves]<br> | ||
+ | ** Silverman, Joseph H. (1986), Graduate Texts in Mathematics, 106, Springer-Verlag<br> | ||
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= |
2009년 10월 12일 (월) 18:09 판
간단한 소개
\(y^2=4x^3-g_2(\tau)x-g_3\)
\(g_2(\tau) = 60G_4=60\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{4}}\)
\(g_3(\tau) = 140G_6=140\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{6}}\)
군의 구조
- chord-tangent method
예
\(y^2=x^3-x\)
[/pages/2061314/attachments/2299029 MSP1975197gdf732cih44i50000361d01gd578fhc4a.gif]
\(y^2=4x^3-4x\)
\(2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots\)
재미있는 사실
역사
관련된 다른 주제들
- 타원적분
- lemniscate 곡선의 길이와 타원적분
- 정수계수 이변수 이차형식(binary integral quadratic forms)
- j-invariant
- 아이젠슈타인 급수(Eisenstein series)
- 베타적분
- 사각 피라미드 퍼즐
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/타원곡선
- http://en.wikipedia.org/wiki/elliptic_curve
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=y^2=x^3-x
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
관련논문
- Conics - a Poor Man's Elliptic Curves
- Franz Lemmermeyer, arXiv:math/0311306v1
- Elliptic Curves
- John Stillwell, The American Mathematical Monthly, Vol. 102, No. 9 (Nov., 1995), pp. 831-837
관련도서 및 추천도서
- The Arithmetic of Elliptic Curves
- Silverman, Joseph H. (1986), Graduate Texts in Mathematics, 106, Springer-Verlag
- Silverman, Joseph H. (1986), Graduate Texts in Mathematics, 106, Springer-Verlag
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)