"학부생을 위한 읽기 목록"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
28번째 줄: 28번째 줄:
  
 
 
 
 
 +
 +
<h5>정수론</h5>
 +
 +
* [http://www.jstor.org/stable/2317083 What is a Reciprocity Law?]<br>
 +
** B. F. Wyman, <cite>The American Mathematical Monthly</cite>, Vol. 79, No. 6 (Jun. - Jul., 1972), pp. 571-586
 +
* [http://www.jstor.org/stable/2324924 Number Theory as Gadfly]<br>
 +
** B. Mazur, <cite>The American Mathematical Monthly</cite>, Vol. 98, No. 7 (Aug. - Sep., 1991), pp. 593-610
  
 
 
 
 
  
<h5>r기하ㅎ</h5>
+
<h5>기하학</h5>
 +
 
 +
* [http://www.jstor.org/stable/2316199 What is a Sheaf?]<br>
 +
** J. Arthur Seebach, Jr., Linda A. Seebach and Lynn A. Steen
 +
** <cite>The American Mathematical Monthly</cite>, Vol. 77, No. 7 (Aug. - Sep., 1970), pp. 681-703
 +
* [http://www.jstor.org/stable/2321093 From Triangles to Manifolds]<br>
 +
** Shing-Shen Chern, <cite>The American Mathematical Monthly</cite>, Vol. 86, No. 5 (May, 1979), pp. 339-349
 +
* [http://www.jstor.org/stable/2324574 What Is Geometry?]<br>
 +
** Shiing-Shen Chern, <cite>The American Mathematical Monthly</cite>, Vol. 97, No. 8, Special Geometry Issue (Oct., 1990), pp. 679-686
 +
* [http://www.jstor.org/stable/3616542 What Is Geometry? The 1982 Presidential Address]<br>
 +
** Michael Atiyah
 +
** <cite>The Mathematical Gazette</cite>, Vol. 66, No. 437 (Oct., 1982), pp. 179-184
 +
* [http://www.jstor.org/stable/3027068 The Universal Domination of Geometry]<br>
 +
** J. Dieudonne, <cite>The Two-Year College Mathematics Journal</cite>, Vol. 12, No. 4 (Sep., 1981), pp. 227-231
  
 
 
 
 
59번째 줄: 79번째 줄:
 
** Andre Weil
 
** Andre Weil
 
** <cite>The American Mathematical Monthly</cite>, Vol. 57, No. 5 (May, 1950), pp. 295-306
 
** <cite>The American Mathematical Monthly</cite>, Vol. 57, No. 5 (May, 1950), pp. 295-306
 +
* [http://www.jstor.org/stable/2323277 Very Basic Lie Theory]<br>
 +
** Roger Howe, <cite>The American Mathematical Monthly</cite>, Vol. 90, No. 9 (Nov., 1983), pp. 600-623
 
* [http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.bams/1183533964&page=record Missed opportunities]<br>
 
* [http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.bams/1183533964&page=record Missed opportunities]<br>
 
** Freeman J. Dyson, Bull. Amer. Math. Soc. Volume 78, Number 5 (1972), 635-652.
 
** Freeman J. Dyson, Bull. Amer. Math. Soc. Volume 78, Number 5 (1972), 635-652.
70번째 줄: 92번째 줄:
 
** I. Kleiner and A. Shenitzer
 
** I. Kleiner and A. Shenitzer
 
** <cite>Mathematics Magazine</cite>, Vol. 66, No. 1 (Feb., 1993), pp. 3-13
 
** <cite>Mathematics Magazine</cite>, Vol. 66, No. 1 (Feb., 1993), pp. 3-13
* [http://www.jstor.org/stable/2317083 What is a Reciprocity Law?]<br>
 
** B. F. Wyman, <cite>The American Mathematical Monthly</cite>, Vol. 79, No. 6 (Jun. - Jul., 1972), pp. 571-586
 
* [http://www.jstor.org/stable/2323277 Very Basic Lie Theory]<br>
 
** Roger Howe, <cite>The American Mathematical Monthly</cite>, Vol. 90, No. 9 (Nov., 1983), pp. 600-623
 
* [http://www.jstor.org/stable/2324924 Number Theory as Gadfly]<br>
 
** B. Mazur, <cite>The American Mathematical Monthly</cite>, Vol. 98, No. 7 (Aug. - Sep., 1991), pp. 593-610
 
 
* [http://www.jstor.org/stable/2589218 Exceptional Objects]<br>
 
* [http://www.jstor.org/stable/2589218 Exceptional Objects]<br>
 
** John Stillwell
 
** John Stillwell
85번째 줄: 101번째 줄:
 
*  Directed Reading Program in Mathematics (Rutgers)<br>
 
*  Directed Reading Program in Mathematics (Rutgers)<br>
 
**  프로그램 안내 : http://www.math.rutgers.edu/undergrad/Activities/drp/index.html<br>
 
**  프로그램 안내 : http://www.math.rutgers.edu/undergrad/Activities/drp/index.html<br>
** 샘플 프로젝트 목록 : http://www.math.rutgers.edu/undergrad/Activities/drp/samples.html <br>
+
** 샘플 프로젝트 목록 : http://www.math.rutgers.edu/undergrad/Activities/drp/samples.html
 +
 
 +
 
 +
 
 +
 
 +
 
 +
AMS의 Student Mathematical Library
 +
 
 +
 
 +
 
 +
 
 +
 
 
* [http://mathdl.maa.org/mathDL/22/ MAA Writing Awards]<br>
 
* [http://mathdl.maa.org/mathDL/22/ MAA Writing Awards]<br>
 
**  
 
**  

2010년 6월 9일 (수) 07:28 판

 

 

수학자와 수학사

 

 

군론과 기하학

 

 

정수론

 

기하학

 

 

논문과 에세이

 

 

AMS의 Student Mathematical Library

 

 

 

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그