"히포크라테스의 초승달"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/3063066">작도문제</a>페이지로 이동하였습니다.) |
|||
16번째 줄: | 16번째 줄: | ||
<h5>재미있는 사실</h5> | <h5>재미있는 사실</h5> | ||
− | * 구적가능한 초승달은 다음의 다섯 가지 경우밖에 없음. 증명은 [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7GWY-4GWPPT5-6&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=857f6cab2083c820cc4307f5d47f3a51 Hippocrates' lunes and transcendence] 를 참조할 것. | + | * 구적가능한 초승달은 다음의 다섯 가지 경우밖에 없음. |
+ | * 그림의 u값은 두 부채꼴의 중심각의 비율임. | ||
+ | * 증명은 [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7GWY-4GWPPT5-6&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=857f6cab2083c820cc4307f5d47f3a51 Hippocrates' lunes and transcendence] 를 참조할 것. | ||
40번째 줄: | 42번째 줄: | ||
<h5>관련된 다른 주제들</h5> | <h5>관련된 다른 주제들</h5> | ||
− | + | * [[피타고라스의 정리]] | |
+ | * [[작도문제와 구적가능성|작도문제]] | ||
+ | * [[가우스와 정17각형의 작도]] | ||
+ | * Gelfond-Schneider theorem | ||
+ | * Baker's theorem | ||
54번째 줄: | 60번째 줄: | ||
<h5>관련된 고교수학 또는 대학수학</h5> | <h5>관련된 고교수학 또는 대학수학</h5> | ||
− | |||
* [[추상대수학]] | * [[추상대수학]] | ||
− | * | + | * [[추상대수학의 토픽들]] |
− | |||
2009년 4월 5일 (일) 08:05 판
간단한 소개
- 고대 그리스인들에게는 자와 컴파스로 하는 작도 문제가 중요
- 주어진 도형의 면적을 구하는 대신, 같은 면적을 갖는 정사각형을 작도하는 것으로 대신할 수 있음.
- 평면도형이 구적가능하다는 것은 자와 컴파스로 같은 면적을 갖는 정사각형을 작도할 수 있다는 말.
- 유명한 문제로 원의 구적, 즉 원과 같은 넓이의 정사각형 작도 문제가 있음.
- 이 문제는 1882년이 되어서야 불가능한 것으로 해결됨.
- 히포크라테스는 BC440년경, 다음과 같은 발견으로 원의 구적문제가 해결 가능할지도 모른다는 희망을 남김.
[/pages/2981558/attachments/1333864 hippocrates.jpg]
어두운 초승달 영역의 넓이와, 삼각형 OAB의 넓이가 같다
재미있는 사실
- 구적가능한 초승달은 다음의 다섯 가지 경우밖에 없음.
- 그림의 u값은 두 부채꼴의 중심각의 비율임.
- 증명은 Hippocrates' lunes and transcendence 를 참조할 것.
[/pages/2981558/attachments/1333916 2.jpg]
[/pages/2981558/attachments/1333914 4.jpg]
[/pages/2981558/attachments/1333912 5.jpg]
[/pages/2981558/attachments/1333910 3.jpg]
[/pages/2981558/attachments/1333908 1.jpg]
관련된 단원
- 작도
관련된 다른 주제들
- 피타고라스의 정리
- 작도문제
- 가우스와 정17각형의 작도
- Gelfond-Schneider theorem
- Baker's theorem
관련도서 및 추천도서
- Journey through Genius: The Great Theorems of Mathematics
- Chapter 1. Hippocrates' Quadrature of the Lune
- William Dunham
관련된 고교수학 또는 대학수학
참고할만한 자료
- The Problem of Squarable Lunes
- M. M. Postnikov and Abe Shenitzer
- The American Mathematical Monthly, Vol. 107, No. 7 (Aug. - Sep., 2000), pp. 645-651
- Hippocrates' lunes and transcendence
- Kurt Girstmair