"외대수(exterior algebra)와 다중선형대수(multilinear algebra)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
42번째 줄: 42번째 줄:
  
 
* <math>\Lambda^k(V)^{*}\simeq\Lambda^k(V^{*})</math>
 
* <math>\Lambda^k(V)^{*}\simeq\Lambda^k(V^{*})</math>
* <math>v_1,\cdots, v_k \in V</math>, <math>f_1,\cdots, f_k \in V^{*}</math> 에 대하여, 다음과 같은 isomorphism <math>\Lambda^k(V^{*})\to \Lambda^k(V)^{*}</math>을 정의할 수 있다<br><math>\langle v_1\wedge\cdots\wedge v_k, f_1\wedge\cdots\wedge f_k\rangle=\det(\langle v_i,f_j\rangle)</math><br>
+
* <math>v_1,\cdots, v_k \in V</math>, <math>f_1,\cdots, f_k \in V^{*}</math> 에 대하여, 다음과 같은 isomorphism <math>\Lambda^k(V^{*})\to \Lambda^k(V)^{*}</math>을 정의할 수 있다:<math>\langle v_1\wedge\cdots\wedge v_k, f_1\wedge\cdots\wedge f_k\rangle=\det(\langle v_i,f_j\rangle)</math><br>
  
 
 
 
 
51번째 줄: 51번째 줄:
  
 
* 외대수의 쌍대 공간을 생각하는 또다른 방식 <math>\Lambda^k(V)^{*}\simeq A^k(V)</math>
 
* 외대수의 쌍대 공간을 생각하는 또다른 방식 <math>\Lambda^k(V)^{*}\simeq A^k(V)</math>
*  교대 겹선형 k-형식(k-alternating form)<br><math>f:V^k\to{\mathbb R},\qquad f(v_{\sigma(1),\cdots,v_{\sigma(k)}})=(\text{sgn}\sigma)f(v_1,\cdots,v_k) \quad\text{for all} \quad\sigma\in S_k.</math><br>
+
*  교대 겹선형 k-형식(k-alternating form):<math>f:V^k\to{\mathbb R},\qquad f(v_{\sigma(1),\cdots,v_{\sigma(k)}})=(\text{sgn}\sigma)f(v_1,\cdots,v_k) \quad\text{for all} \quad\sigma\in S_k.</math><br>
 
* <math>A^k(V)</math> : the set of k-alternating forms on V
 
* <math>A^k(V)</math> : the set of k-alternating forms on V
 
* <math>A(V) = A^0(V)\oplus A^1(V) \oplus A^2(V) \oplus \cdots \oplus A^n(V)</math>
 
* <math>A(V) = A^0(V)\oplus A^1(V) \oplus A^2(V) \oplus \cdots \oplus A^n(V)</math>
*  wedge product<br><math>\omega\wedge\eta=\frac{(k+m)!}{k!\,m!}\operatorname{Alt}(\omega\otimes\eta)</math><br> 여기서 <math>\operatorname{Alt}(\omega)(x_1,\ldots,x_k)=\frac{1}{k!}\sum_{\sigma\in S_k}\operatorname{sgn}(\sigma)\,\omega(x_{\sigma(1)},\ldots,x_{\sigma(k)}).</math><br>
+
*  wedge product:<math>\omega\wedge\eta=\frac{(k+m)!}{k!\,m!}\operatorname{Alt}(\omega\otimes\eta)</math><br> 여기서 <math>\operatorname{Alt}(\omega)(x_1,\ldots,x_k)=\frac{1}{k!}\sum_{\sigma\in S_k}\operatorname{sgn}(\sigma)\,\omega(x_{\sigma(1)},\ldots,x_{\sigma(k)}).</math><br>
* [[(p,q)-셔플(shuffle)|(p,q)-shuffle]] 을 이용한 정의<br><math>\omega \wedge \eta(x_1,\ldots,x_{k+m}) = \sum_{\sigma \in Sh_{k,m}} \operatorname{sgn}(\sigma)\,\omega(x_{\sigma(1)}, \ldots, x_{\sigma(k)}) \eta(x_{\sigma(k+1)}, \ldots, x_{\sigma(k+m)}),</math><br>
+
* [[(p,q)-셔플(shuffle)|(p,q)-shuffle]] 을 이용한 정의:<math>\omega \wedge \eta(x_1,\ldots,x_{k+m}) = \sum_{\sigma \in Sh_{k,m}} \operatorname{sgn}(\sigma)\,\omega(x_{\sigma(1)}, \ldots, x_{\sigma(k)}) \eta(x_{\sigma(k+1)}, \ldots, x_{\sigma(k+m)}),</math><br>
  
 
 
 
 

2013년 1월 12일 (토) 10:03 판

개요

  • \(\Lambda(V)\) : alternating algebra, exterior algebra, 그라스만 대수 라는 이름으로 불림
  • 기하학에서 미분형식 을 정의하기 위한 대수적 장치
  • 클리포드 대수 는 외대수의 일반화로 볼 수 있다

 

 

텐서 공간

  • V : 유한차원 벡터공간
  • \(V^{*}\) : V의 쌍대공간
  • \(T=V\otimes \cdots \otimes V \cdots \otimes V^{*}\cdots \otimes V^{*}\) : 텐서공간
  • \(T\) 의 원소를 텐서라 부른다
  • \(V, V^{*}\) 에 대한 multilinear function 으로 이해할 수 있다

 

 

텐서 대수 tensor algebra

  • \(T(V)\)

 

 

외대수 exterior algebra

  • 정의 \(\Lambda(V) := T(V)/I\)
  • \(\Lambda(V) = \Lambda^0(V)\oplus \Lambda^1(V) \oplus \Lambda^2(V) \oplus \cdots \oplus \Lambda^n(V)\)
  • \(\alpha\in \Lambda^k(V), \beta\in \Lambda^p(V)\) 에 대하여 \(\alpha\wedge\beta = (-1)^{kp}\beta\wedge\alpha\) 가 성립한다

 

 

외대수의 쌍대 공간

  • \(\Lambda^k(V)^{*}\simeq\Lambda^k(V^{*})\)
  • \(v_1,\cdots, v_k \in V\), \(f_1,\cdots, f_k \in V^{*}\) 에 대하여, 다음과 같은 isomorphism \(\Lambda^k(V^{*})\to \Lambda^k(V)^{*}\)을 정의할 수 있다\[\langle v_1\wedge\cdots\wedge v_k, f_1\wedge\cdots\wedge f_k\rangle=\det(\langle v_i,f_j\rangle)\]

 

 

교대 겹선형 형식 alternating multilinear form과 외대수의 쌍대 공간

  • 외대수의 쌍대 공간을 생각하는 또다른 방식 \(\Lambda^k(V)^{*}\simeq A^k(V)\)
  • 교대 겹선형 k-형식(k-alternating form)\[f:V^k\to{\mathbb R},\qquad f(v_{\sigma(1),\cdots,v_{\sigma(k)}})=(\text{sgn}\sigma)f(v_1,\cdots,v_k) \quad\text{for all} \quad\sigma\in S_k.\]
  • \(A^k(V)\) : the set of k-alternating forms on V
  • \(A(V) = A^0(V)\oplus A^1(V) \oplus A^2(V) \oplus \cdots \oplus A^n(V)\)
  • wedge product\[\omega\wedge\eta=\frac{(k+m)!}{k!\,m!}\operatorname{Alt}(\omega\otimes\eta)\]
    여기서 \(\operatorname{Alt}(\omega)(x_1,\ldots,x_k)=\frac{1}{k!}\sum_{\sigma\in S_k}\operatorname{sgn}(\sigma)\,\omega(x_{\sigma(1)},\ldots,x_{\sigma(k)}).\)
  • (p,q)-shuffle 을 이용한 정의\[\omega \wedge \eta(x_1,\ldots,x_{k+m}) = \sum_{\sigma \in Sh_{k,m}} \operatorname{sgn}(\sigma)\,\omega(x_{\sigma(1)}, \ldots, x_{\sigma(k)}) \eta(x_{\sigma(k+1)}, \ldots, x_{\sigma(k+m)}),\]

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트