"대칭군 (symmetric group)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
12번째 줄: | 12번째 줄: | ||
* 생성원 <math>\sigma_1, \ldots, \sigma_{n-1}</math> 여기서 <math>\sigma_i=(i, i+1)</math> | * 생성원 <math>\sigma_1, \ldots, \sigma_{n-1}</math> 여기서 <math>\sigma_i=(i, i+1)</math> | ||
* 관계식 | * 관계식 | ||
− | + | ** <math>{\sigma_i}^2 = 1</math> | |
− | + | ** <math>\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1</math> (즉 <math>|i-j|\geq 2</math>) | |
− | + | ** <math>\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}</math> 이 조건은 <math>(\sigma_i\sigma_{i+1})^3=1</math> 로 쓸 수 있다 | |
* 이로부터 대칭군은 [[유한반사군과 콕세터군(finite reflection groups and Coxeter groups)]] 임을 알 수 있다 | * 이로부터 대칭군은 [[유한반사군과 콕세터군(finite reflection groups and Coxeter groups)]] 임을 알 수 있다 | ||
:<math>\left\langle \sigma_1,\cdots, \sigma_{n-1}\mid \sigma_1^2=\cdots=\sigma_{n-1}^2=1, (\sigma_i\sigma_{i+1})^{3}=1, i=1,\cdots, n-2\right\rangle</math> | :<math>\left\langle \sigma_1,\cdots, \sigma_{n-1}\mid \sigma_1^2=\cdots=\sigma_{n-1}^2=1, (\sigma_i\sigma_{i+1})^{3}=1, i=1,\cdots, n-2\right\rangle</math> |
2013년 1월 23일 (수) 06:40 판
개요
- 원소의 개수가 n인 집합의 전단사함수들의 모임으로 군을 이룸
- \(n!\) 개의 원소가 존재함
- 대칭군의 부분군은 치환군(permutation group)이라 불림
presentation
- 생성원 \(\sigma_1, \ldots, \sigma_{n-1}\) 여기서 \(\sigma_i=(i, i+1)\)
- 관계식
- \({\sigma_i}^2 = 1\)
- \(\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1\) (즉 \(|i-j|\geq 2\))
- \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\) 이 조건은 \((\sigma_i\sigma_{i+1})^3=1\) 로 쓸 수 있다
- 이로부터 대칭군은 유한반사군과 콕세터군(finite reflection groups and Coxeter groups) 임을 알 수 있다
\[\left\langle \sigma_1,\cdots, \sigma_{n-1}\mid \sigma_1^2=\cdots=\sigma_{n-1}^2=1, (\sigma_i\sigma_{i+1})^{3}=1, i=1,\cdots, n-2\right\rangle\]
방정식에의 응용 치환군
관련된 항목들
메모
- http://mathoverflow.net/questions/10635/why-are-the-characters-of-the-symmetric-group-integer-valued
- \(S_6\)는 항등원이 아닌 outer automorphism을 가짐
역사
매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxZjJmYTU3ZmQtYTcxMC00MmMxLWIyNDAtYjk1NmJhOTg0MTEy&sort=name&layout=list&num=50
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
수학용어번역
사전 형태의 자료
- http://en.wikipedia.org/wiki/Symmetric_group
- http://en.wikipedia.org/wiki/Automorphisms_of_the_symmetric_and_alternating_groups
- http://en.wikipedia.org/wiki/Permutation_groups
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Symmetries of the Cube and Outer Automorphisms of S6
- http://www.jstor.org/action/doBasicSearch?Query=random
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=사다리타기
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=사다리타기수학
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=