"정이면체군 (dihedral group)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
13번째 줄: 13번째 줄:
 
==반사 변환과 회전==
 
==반사 변환과 회전==
  
*  벡터 <math>(\cos (\theta ),\sin (\theta ))</math>를 법벡터로 갖는 직선에 대한 반사변환을 행렬로 다음과 같이 표현할 수 있다:<math>s_{\theta}=\left( \begin{array}{cc}  -\cos (2 \theta ) & -\sin (2 \theta ) \\  -\sin (2 \theta ) & \cos (2 \theta ) \end{array} \right)</math><br>
+
*  벡터 <math>(\cos (\theta ),\sin (\theta ))</math>를 법벡터로 갖는 직선에 대한 [[반사 변환]]을 행렬로 다음과 같이 표현할 수 있다
 +
:<math>s_{\theta}=\left( \begin{array}{cc}  -\cos (2 \theta ) & -\sin (2 \theta ) \\  -\sin (2 \theta ) & \cos (2 \theta ) \end{array} \right)</math><br>
 
*  가령 <math>\theta=0</math>인 경우는 y-축에 대한 반사변환이 되며, 다음 행렬로 표현된다:<math>\left(\begin{array}{cc} -1 & 0 \\ 0 & 1  \end{array}\right)</math><br>
 
*  가령 <math>\theta=0</math>인 경우는 y-축에 대한 반사변환이 되며, 다음 행렬로 표현된다:<math>\left(\begin{array}{cc} -1 & 0 \\ 0 & 1  \end{array}\right)</math><br>
*  두 반사변환 <math>s_{\theta_1},s_{\theta_2}</math>의 합성 <math>s_{\theta_1}s_{\theta_2}</math>은 다음과 같은 [[2차원 회전 변환|회전변환]]이 된다:<math>\left( \begin{array}{cc}  \cos \left(2 \theta _1-2 \theta _2\right) & -\sin \left(2 \theta _1-2 \theta _2\right) \\  \sin \left(2 \theta _1-2 \theta _2\right) & \cos \left(2 \theta _1-2 \theta _2\right) \end{array} \right)</math><br>
+
*  두 반사 변환 <math>s_{\theta_1},s_{\theta_2}</math>의 합성 <math>s_{\theta_1}s_{\theta_2}</math>은 다음과 같은 [[2차원 회전 변환|회전변환]]이 된다:<math>\left( \begin{array}{cc}  \cos \left(2 \theta _1-2 \theta _2\right) & -\sin \left(2 \theta _1-2 \theta _2\right) \\  \sin \left(2 \theta _1-2 \theta _2\right) & \cos \left(2 \theta _1-2 \theta _2\right) \end{array} \right)</math><br>
  
 
 
 
 

2013년 2월 1일 (금) 13:46 판

개요

  • 정n각형의 자기동형군
  • 크기가 2n이며 정이면체군 \(D_n\)이라 부른다
  • 생성원과 관계식\[\left\langle a,b\mid a^2=b^n=1, a^{-1}ba=b^{-1}\right\rangle\]
  • semidirect product \(D_{n}= C_{n} \rtimes \mathbb{Z}_{2}\) 로 쓸 수 있다
  • 콕세터군으로서의 생성원과 관계식\[\left\langle r_1,r_2\mid r_1^2=r_2^2=(r_1r_2)^{n}=1\right\rangle\]

 

 

반사 변환과 회전

  • 벡터 \((\cos (\theta ),\sin (\theta ))\)를 법벡터로 갖는 직선에 대한 반사 변환을 행렬로 다음과 같이 표현할 수 있다

\[s_{\theta}=\left( \begin{array}{cc} -\cos (2 \theta ) & -\sin (2 \theta ) \\ -\sin (2 \theta ) & \cos (2 \theta ) \end{array} \right)\]

  • 가령 \(\theta=0\)인 경우는 y-축에 대한 반사변환이 되며, 다음 행렬로 표현된다\[\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)\]
  • 두 반사 변환 \(s_{\theta_1},s_{\theta_2}\)의 합성 \(s_{\theta_1}s_{\theta_2}\)은 다음과 같은 회전변환이 된다\[\left( \begin{array}{cc} \cos \left(2 \theta _1-2 \theta _2\right) & -\sin \left(2 \theta _1-2 \theta _2\right) \\ \sin \left(2 \theta _1-2 \theta _2\right) & \cos \left(2 \theta _1-2 \theta _2\right) \end{array} \right)\]

 

 

정이면체군의 기하학적 이해

  • 정이면체군 \(D_n\)은 정n각형의 자기동형군으로 이해할 수 있다
  • 다음 두 반사변환은 생성원이 된다\[x=\left( \begin{array}{cc} -\cos \left(\frac{2 \pi }{n}\right) & -\sin \left(\frac{2 \pi }{n}\right) \\ -\sin \left(\frac{2 \pi }{n}\right) & \cos \left(\frac{2 \pi }{n}\right) \end{array} \right)\]\[y=\left( \begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right)\]
  • x와 y의 합성으로부터, order가 n인 다음 회전변환을 얻을 수 있다 (콕세터 원소(Coxeter element) )\[\left( \begin{array}{cc} \cos \left(\frac{2 \pi }{n}\right) & -\sin \left(\frac{2 \pi }{n}\right) \\ \sin \left(\frac{2 \pi }{n}\right) & \cos \left(\frac{2 \pi }{n}\right) \end{array} \right)\]

 

 

D5와 정오각형의 예

  • 정이면체군 \(D_5\) 는 10개의 원소로 이루어져 있으며, 각각의 원소는 정오각형에 다음과 같은 대칭변환으로 작용한다
    12583136- dihedral group 1.gif

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트