"곡선"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
54번째 줄: | 46번째 줄: | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
* [[수학사 연표]] | * [[수학사 연표]] | ||
− | |||
66번째 줄: | 57번째 줄: | ||
− | + | == 하위페이지 == | |
− | * [[곡선]] | + | * [[곡선]] |
− | + | * [[로그나선]] | |
− | + | * [[사이클로이드]] | |
− | + | * [[등시강하곡선 문제 (Tautochrone problem)]] | |
− | + | * [[최단시간강하곡선 문제(Brachistochrone problem)]] | |
− | + | * [[심장형 곡선(cardioid)]] | |
− | + | * [[원의 방정식]] | |
− | + | * [[이차곡선(원뿔곡선)]] | |
− | + | * [[쌍곡선]] | |
− | + | * [[타원]] | |
− | + | * [[포물선]] | |
− | + | * [[추적선 (tractrix)]] | |
− | + | * [[포락선(envelope)과 curve stitching]] | |
− | |||
− | |||
89번째 줄: | 78번째 줄: | ||
* [[이차곡선(원뿔곡선)]] | * [[이차곡선(원뿔곡선)]] | ||
− | * [[렘니스케이트(lemniscate) 곡선의 길이와 | + | * [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분]] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
114번째 줄: | 90번째 줄: | ||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
+ | |||
+ | |||
+ | ==관련 웹페이지== | ||
* [http://xahlee.org/SpecialPlaneCurves_dir/specialPlaneCurves.html A Visual Dictionary of Special Plane Curves] | * [http://xahlee.org/SpecialPlaneCurves_dir/specialPlaneCurves.html A Visual Dictionary of Special Plane Curves] | ||
* [http://curvebank.calstatela.edu/home/home.htm National Curve Bank] | * [http://curvebank.calstatela.edu/home/home.htm National Curve Bank] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[분류:곡선]] | [[분류:곡선]] |
2013년 3월 11일 (월) 08:58 판
개요
- 매개화된 곡선 \(\overrightarrow{r}(t)=(\cos t,\sin t, 3t)\).
곡선의 길이
\((1,0,0)\) 에서 \((1,0,6\pi)\)까지의 곡선의 길이
At \((1,0,0)\), \(t=0\) and at \((1,0,6\pi)\), \(t=2\pi\)
\(\overrightarrow{r}'(t)=(-\sin t,\cos t, 3)\)
\(|\overrightarrow{r}'(t)| =\sqrt{\sin^2 t+\cos^2 t +9}=\sqrt{10}\)
곡선의 길이는 다음과 같이 주어지게 된다
\(L=\int_{0}^{2\pi}|\overrightarrow{r}'(t)| \,dt=\int_{0}^{2\pi}\sqrt{10}\,dt=2\sqrt{10}\pi\)
곡률
- 곡선의 방향 변화를 재는 양
- 길이 s를 매개변수로 갖는 곡선\(\overrightarrow{X}(s)\)의 경우, 이계도함수의 절대값으로 주어진다
\(\overrightarrow{T}(t)=\frac{\overrightarrow{r}'(t)}{|\overrightarrow{r}'(t)|}=\frac{(-\sin t,\cos t, 3)}{\sqrt{10}}\)
\(\overrightarrow{T}'(t)=\frac{(-\cos t,-\sin t, 0)}{\sqrt{10}}\)
\(k=\frac{|\overrightarrow{T}'(t)|}{|\overrightarrow{r}'(t)|}=\frac{\frac{|(-\cos t,\sin t, 0)|}{\sqrt{10}}}{\sqrt{10}}=\frac{1}{10}\)
역사
메모
하위페이지
- 곡선
- 로그나선
- 사이클로이드
- 등시강하곡선 문제 (Tautochrone problem)
- 최단시간강하곡선 문제(Brachistochrone problem)
- 심장형 곡선(cardioid)
- 원의 방정식
- 이차곡선(원뿔곡선)
- 쌍곡선
- 타원
- 포물선
- 추적선 (tractrix)
- 포락선(envelope)과 curve stitching
관련된 항목들
사전 형태의 자료