"수식 표현 안내"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
32번째 줄: 32번째 줄:
 
* http://en.wikibooks.org/wiki/LaTeX
 
* http://en.wikibooks.org/wiki/LaTeX
  
+
===모르는 명령어 그림으로 알아내기===
 
 
==모르는 명령어 그림으로 알아내기==
 
 
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
  
 
  
 
  
 
==LaTeX으로 노트하기==
 
==LaTeX으로 노트하기==
 
 
* [http://math.berkeley.edu/%7Eanton/index.php?m1=me&m2=TeXadvice Advice on realtime TeXing]
 
* [http://math.berkeley.edu/%7Eanton/index.php?m1=me&m2=TeXadvice Advice on realtime TeXing]
 
 
 
 
 
 
* 한글 TeX http://ajt.ktug.kr/2007/0102khlee.pdf
 
* 한글 TeX http://ajt.ktug.kr/2007/0102khlee.pdf
  
 
   
 
   
==LaTeX 명령예1==
+
==LaTeX 명령예==
* <math>\chi(t)=\left(\frac{t}{p}\right)</math>
+
===cases===
* <math>\operatorname{Re} a > 0 </math>
 
* <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
 
* <math>e^{i \pi} +1 = 0</math>
 
* <math>2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}</math>
 
* <math>\frac{\sqrt{3}}{5}</math>
 
* <math>720\div12=60</math>
 
* <math>\large f^\prime(x)\ =         \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}</math>
 
* <math>\Large A\ =\ \large\left(        \begin{array}{c.cccc}&1&2&\cdots&n\\      1&a_{11}&a_{12}&\cdots&a_{1n}\\        2&a_{21}&a_{22}&\cdots&a_{2n}\\        \vdots&\vdots&\vdots&\ddots&\vdots\\        n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)</math>
 
 
 
$$ \LARGE\tilde y=\left\{  {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.$$
 
 
 
$$\Large\left.\begin{eqnarray}    x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}$$
 
 
 
* <math>\int e^{-\frac{x^2}{2}} dx</math>
 
 
 
$$ \int e^{-\frac{x^2}{2}} dx$$
 
 
 
$$e^x=\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n$$
 
 
 
$\sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}$
 
 
 
$\int_{a}^{b}f(x)dx=F(b)-F(a)$
 
 
 
$\exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}$
 
 
 
 
 
 
 
==LaTeX 명령예2==
 
'''cases'''
 
 
$$
 
$$
 
f(n) =
 
f(n) =
91번째 줄: 51번째 줄:
 
\end{cases}
 
\end{cases}
 
$$
 
$$
 +
====atop====
 +
$$\tilde y=\left\{  {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.$$
 +
  
  
'''연립방정식'''
+
===array===
 
$$ \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right. $$
 
$$ \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right. $$
 +
$$ \begin{array}{c|lcr} n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \\ \end{array} $$
  
 +
:<math>A=\left(        \begin{array}{c.cccc}&1&2&\cdots&n\\      1&a_{11}&a_{12}&\cdots&a_{1n}\\        2&a_{21}&a_{22}&\cdots&a_{2n}\\        \vdots&\vdots&\vdots&\ddots&\vdots\\        n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)</math>
  
'''array'''
+
 
$$ \begin{array}{c|lcr} n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \\ \end{array} $$
+
===eqnarray===
 +
$$\left.\begin{eqnarray}   x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}$$
  
  
  
'''align'''
+
===align===
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
129번째 줄: 95번째 줄:
  
  
'''underbrace'''
+
===underbrace===
 
:<math>\underbrace{i \hbar \frac{\partial}{\partial t} |\varphi_\pm\rangle = \left( \frac{( \mathbf{p} -e \mathbf A)^2}{2 m} + e \phi \right) \hat 1 \mathbf |\varphi_\pm\rangle }_\mathrm{Schr\ddot{o}dinger~equation} - \underbrace{\frac{e \hbar}{2m}\mathbf{\sigma} \cdot \mathbf B \mathbf |\varphi_\pm\rangle }_\text{Stern Gerlach term}</math>
 
:<math>\underbrace{i \hbar \frac{\partial}{\partial t} |\varphi_\pm\rangle = \left( \frac{( \mathbf{p} -e \mathbf A)^2}{2 m} + e \phi \right) \hat 1 \mathbf |\varphi_\pm\rangle }_\mathrm{Schr\ddot{o}dinger~equation} - \underbrace{\frac{e \hbar}{2m}\mathbf{\sigma} \cdot \mathbf B \mathbf |\varphi_\pm\rangle }_\text{Stern Gerlach term}</math>
 
[[파울리 방정식]]
 
[[파울리 방정식]]
  
  
'''substack'''
+
===substack===
 
$$
 
$$
 
\sum_{
 
\sum_{
143번째 줄: 109번째 줄:
 
$$
 
$$
  
==서체==
+
 
$\alpha \beta \gamma \delta \epsilon (\varepsilon) \zeta \eta \theta
+
===크기===
 +
;large
 +
$$
 +
\large f^\prime(x)\ =        \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
 +
$$
 +
;Large
 +
$$
 +
\Large f^\prime(x)\ =        \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
 +
$$
 +
;LARGE
 +
$$
 +
\LARGE f^\prime(x)\ =        \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
 +
$$
 +
 
 +
 
 +
===그리스 문자===
 +
$$\alpha \beta \gamma \delta \epsilon (\varepsilon) \zeta \eta \theta
 
(\vartheta) \iota \kappa \lambda \mu \nu \xi o \pi \rho \sigma \tau \upsilon
 
(\vartheta) \iota \kappa \lambda \mu \nu \xi o \pi \rho \sigma \tau \upsilon
\phi (\varphi) \chi \psi \omega$.
+
\phi (\varphi) \chi \psi \omega$$
  
$A B \Gamma \Delta E Z H \Theta I K \Lambda M N \Xi O \Pi P \Sigma T \Upsilon
+
$$A B \Gamma \Delta E Z H \Theta I K \Lambda M N \Xi O \Pi P \Sigma T \Upsilon
\Phi X \Psi \Omega$.
+
\Phi X \Psi \Omega$$
  
  
 +
===글꼴===
 
$$\text{mathcal }\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$$
 
$$\text{mathcal }\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$$
 
$$\text{mathscr }\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$$
 
$$\text{mathscr }\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$$
159번째 줄: 142번째 줄:
 
$$\text{mathfrak }\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$$
 
$$\text{mathfrak }\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$$
 
$$\text{mathfrak }\mathfrak{abcdefghijklmnopqrstuvwxyz}$$
 
$$\text{mathfrak }\mathfrak{abcdefghijklmnopqrstuvwxyz}$$
 +
 +
 +
===기타===
 +
* <math>\chi(t)=\left(\frac{t}{p}\right)</math>
 +
* <math>\operatorname{Re} a > 0 </math>
 +
* <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
 +
* <math>720\div12=60</math>
 +
* $\exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}$
 +
* <math>\mathcal{H}om</math>
 +
* <math>G\"odel</math> http://www.phil.cam.ac.uk/teaching_staff/Smith/LaTeX/other-macros/godelcorners.html
 +
* <math>\Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}</math>
 +
# \Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}
 +
* <math>\Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}</math>
 +
# \Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
 +
 +
  
 
== 관련된 항목들 ==
 
== 관련된 항목들 ==
166번째 줄: 165번째 줄:
 
* [[행렬과 연립방정식의 수식표현]]
 
* [[행렬과 연립방정식의 수식표현]]
 
* [[화살표 모음]]
 
* [[화살표 모음]]
 
==예==
 
<math>\mathcal{H}om</math>
 
<math>G\"odel</math>
 
http://www.phil.cam.ac.uk/teaching_staff/Smith/LaTeX/other-macros/godelcorners.html
 
 
 
* <math>\Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}</math>
 
 
# \Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}
 
 
* <math>\Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}</math>
 
 
# \Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
 
 
  
 
[[분류:수식표현]]
 
[[분류:수식표현]]

2013년 11월 10일 (일) 04:44 판

웹과 수식표현

HTML 수식표현

웹상에서의 LaTeX을 통한 수식표현


LaTeX 명령어 입문

모르는 명령어 그림으로 알아내기


LaTeX으로 노트하기


LaTeX 명령예

cases

$$ f(n) = \begin{cases} n/2, & \text{if $n$ is even}\\ 3n+1, & \text{if $n$ is odd} \\ \end{cases} $$

atop

$$\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.$$


array

$$ \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right. $$ $$ \begin{array}{c|lcr} n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \\ \end{array} $$

\[A=\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ 1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)\]


eqnarray

$$\left.\begin{eqnarray} x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}$$


align

\[ \begin{align} & {} \quad \int Y_{l_1}^{m_1}(\theta,\varphi)Y_{l_2}^{m_2}(\theta,\varphi)Y_{l_3}^{m_3}(\theta,\varphi)\,\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi \\ & = \sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} \begin{pmatrix} l_1 & l_2 & l_3 \\[8pt] 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l_1 & l_2 & l_3\\ m_1 & m_2 & m_3 \end{pmatrix} \end{align} \]

\[ \begin{align} \omega_{n} & =\int\cdots\int_{x_1^2+\cdots+x_n^2\leq\ 1} dx_{1}\cdots dx_{n} \\ & = \int_{-1}^{1}\left(\int\cdots \int_{x_1^2+\cdots +x_{n-1}^2\leq\ 1-x_{n}^2} dx_{1}\cdots dx_{n-1}\right)dx_{n} \end{align} \]


underbrace

\[\underbrace{i \hbar \frac{\partial}{\partial t} |\varphi_\pm\rangle = \left( \frac{( \mathbf{p} -e \mathbf A)^2}{2 m} + e \phi \right) \hat 1 \mathbf |\varphi_\pm\rangle }_\mathrm{Schr\ddot{o}dinger~equation} - \underbrace{\frac{e \hbar}{2m}\mathbf{\sigma} \cdot \mathbf B \mathbf |\varphi_\pm\rangle }_\text{Stern Gerlach term}\] 파울리 방정식


substack

$$ \sum_{ \substack{ r,s,t\geq 0 \\ r+s=m,s+t=n}} \frac{q^{rt}}{(q)_r(q)_s(q)_t}=\frac{1}{(q)_{m}(q)_{n}} $$


크기

large

$$ \large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} $$

Large

$$ \Large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} $$

LARGE

$$ \LARGE f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} $$


그리스 문자

$$\alpha \beta \gamma \delta \epsilon (\varepsilon) \zeta \eta \theta (\vartheta) \iota \kappa \lambda \mu \nu \xi o \pi \rho \sigma \tau \upsilon \phi (\varphi) \chi \psi \omega$$

$$A B \Gamma \Delta E Z H \Theta I K \Lambda M N \Xi O \Pi P \Sigma T \Upsilon \Phi X \Psi \Omega$$


글꼴

$$\text{mathcal }\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$$ $$\text{mathscr }\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$$ $$\text{mathbb }\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$$ $$\text{mathbf }\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$$ $$\text{mathbf }\mathbf{abcdefghijklmnopqrstuvwxyz}$$ $$\text{mathfrak }\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$$ $$\text{mathfrak }\mathfrak{abcdefghijklmnopqrstuvwxyz}$$


기타

  • \(\chi(t)=\left(\frac{t}{p}\right)\)
  • \(\operatorname{Re} a > 0 \)
  • \(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
  • \(720\div12=60\)
  • $\exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}$
  • \(\mathcal{H}om\)
  • \(G\"odel\) http://www.phil.cam.ac.uk/teaching_staff/Smith/LaTeX/other-macros/godelcorners.html
  • \(\Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}\)
  1. \Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}
  • \(\Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}\)
  1. \Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}


관련된 항목들