"모츠킨 수 (Motzkin number)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
5번째 줄: | 5번째 줄: | ||
==생성함수== | ==생성함수== | ||
− | * | + | * 생성함수 $M(z)=\sum_{n=0}^{\infty}M_n z^n$는 다음의 함수방정식을 만족한다 |
$$ | $$ | ||
− | + | M(z)=1+z M(z)+(z M(z))^2 | |
+ | $$ | ||
+ | * 멱급수전개 | ||
+ | $$ | ||
+ | M(z)=\frac{1-z-\sqrt{(1+z) (1-3 z)}}{2 z^2}=1+z+2 z^2+4 z^3+9 z^4+21 z^5+51 z^6+\cdots | ||
$$ | $$ | ||
34번째 줄: | 38번째 줄: | ||
==관련논문== | ==관련논문== | ||
+ | * Kuznetsov, Alexander, Igor Pak, and Alexander Postnikov. "Trees associated with the Motzkin numbers." journal of combinatorial theory, Series A 76.1 (1996): 145-147. | ||
* Donaghey, Robert, and Louis W Shapiro. 1977. “Motzkin Numbers.” Journal of Combinatorial Theory, Series A 23 (3) (November): 291–301. doi:10.1016/0097-3165(77)90020-6. | * Donaghey, Robert, and Louis W Shapiro. 1977. “Motzkin Numbers.” Journal of Combinatorial Theory, Series A 23 (3) (November): 291–301. doi:10.1016/0097-3165(77)90020-6. | ||
2014년 2월 2일 (일) 17:14 판
개요
- 원 위에 n개의 점이 주어져 있을 때, 서로 만나지 않도록 두 점 사이의 호를 그리는 방법의 수 $M_n,\quad n=0,1,2\cdots$
- 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, ...
생성함수
- 생성함수 $M(z)=\sum_{n=0}^{\infty}M_n z^n$는 다음의 함수방정식을 만족한다
$$ M(z)=1+z M(z)+(z M(z))^2 $$
- 멱급수전개
$$ M(z)=\frac{1-z-\sqrt{(1+z) (1-3 z)}}{2 z^2}=1+z+2 z^2+4 z^3+9 z^4+21 z^5+51 z^6+\cdots $$
점근급수
- 다음이 성립한다
$$ M_n\sim \sqrt{\frac{3}{4 \pi n^3}} 3^n \left(1-\frac{15}{16 n}+\frac{505}{512 n^2}-\frac{8085}{8192 n^3}+\frac{505659}{524288 n^4}+O(n^{-5})\right) $$
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxakM3c2ctRDlrUjQ/edit
- http://oeis.org/A001006
- http://demonstrations.wolfram.com/ChordDiagramsForMotzkinNumbers/
사전 형태의 자료
수학용어번역
- Motzkin - 발음사전 Forvo
관련논문
- Kuznetsov, Alexander, Igor Pak, and Alexander Postnikov. "Trees associated with the Motzkin numbers." journal of combinatorial theory, Series A 76.1 (1996): 145-147.
- Donaghey, Robert, and Louis W Shapiro. 1977. “Motzkin Numbers.” Journal of Combinatorial Theory, Series A 23 (3) (November): 291–301. doi:10.1016/0097-3165(77)90020-6.